Abstract

An enhanced optical system design for NDIR gas detection is presented. Multiple paths lengths within the same cavity are used to auto reference the system. The system has good thermo-mechanical stability: it requires no special thermal stabilization, shows no sensitivity to thermal emitter drift and has no moving parts involved. Long term stability, virtually no zero-drift and sub-ppm level gas detection were achieved using commercial thermopile sensors and a thermal emitter modulated at low frequency (~0.5 Hz). Experimental tests were performed using carbon monoxide (CO) and a 30.5 cm cavity length. The design can be extended to allow multiple gas detection within the same optical cavity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Crowder, S. D. Smith, A. Vass, and K. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, Vol. 118 of Springer Series in Optical Sciences (Springer, New York, 2006), pp. 595–613.
  2. L. W. Chaney and W. A. McClenny, “Unique ambient carbon monoxide monitor based on gas filter correlation: performance and application,” Environ. Sci. Technol. 11(13), 1186–1190 (1977).
    [CrossRef]
  3. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [CrossRef]
  4. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32(5), 285–288 (1942).
    [CrossRef]
  5. S. M. Chernin and E. G. Barskaya, “Optical multipass matrix systems,” Appl. Opt. 30(1), 51–58 (1991).
    [CrossRef] [PubMed]
  6. E. Theocharous, “Absolute linearity measurements on a PbSe detector in the infrared,” Infrared Phys. Technol. 50(1), 63–69 (2007).
    [CrossRef]
  7. M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
    [CrossRef]
  8. J. Y. Wong and M. Schell, “Zero drift NDIR gas sensors,” Sen. Rev. 31, 70–77 (2011); also published as “Absorption biased gas sensors,” patent application WO/2011/022558 [US2010/046030] (Feb. 24, 2011).

2011 (1)

J. Y. Wong and M. Schell, “Zero drift NDIR gas sensors,” Sen. Rev. 31, 70–77 (2011); also published as “Absorption biased gas sensors,” patent application WO/2011/022558 [US2010/046030] (Feb. 24, 2011).

2007 (1)

E. Theocharous, “Absolute linearity measurements on a PbSe detector in the infrared,” Infrared Phys. Technol. 50(1), 63–69 (2007).
[CrossRef]

2003 (1)

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

1991 (1)

1977 (1)

L. W. Chaney and W. A. McClenny, “Unique ambient carbon monoxide monitor based on gas filter correlation: performance and application,” Environ. Sci. Technol. 11(13), 1186–1190 (1977).
[CrossRef]

1942 (1)

Barskaya, E. G.

Chaney, L. W.

L. W. Chaney and W. A. McClenny, “Unique ambient carbon monoxide monitor based on gas filter correlation: performance and application,” Environ. Sci. Technol. 11(13), 1186–1190 (1977).
[CrossRef]

Chernin, S. M.

Dickie, M. R.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

Foote, M. C.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Jones, E. W.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Krueger, T. R.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

McCann, T. A.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

McCleese, D. J.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

McClenny, W. A.

L. W. Chaney and W. A. McClenny, “Unique ambient carbon monoxide monitor based on gas filter correlation: performance and application,” Environ. Sci. Technol. 11(13), 1186–1190 (1977).
[CrossRef]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Schell, M.

J. Y. Wong and M. Schell, “Zero drift NDIR gas sensors,” Sen. Rev. 31, 70–77 (2011); also published as “Absorption biased gas sensors,” patent application WO/2011/022558 [US2010/046030] (Feb. 24, 2011).

Schofield, J. T.

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Theocharous, E.

E. Theocharous, “Absolute linearity measurements on a PbSe detector in the infrared,” Infrared Phys. Technol. 50(1), 63–69 (2007).
[CrossRef]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

White, J. U.

Wong, J. Y.

J. Y. Wong and M. Schell, “Zero drift NDIR gas sensors,” Sen. Rev. 31, 70–77 (2011); also published as “Absorption biased gas sensors,” patent application WO/2011/022558 [US2010/046030] (Feb. 24, 2011).

Appl. Opt. (1)

Environ. Sci. Technol. (1)

L. W. Chaney and W. A. McClenny, “Unique ambient carbon monoxide monitor based on gas filter correlation: performance and application,” Environ. Sci. Technol. 11(13), 1186–1190 (1977).
[CrossRef]

Infrared Phys. Technol. (1)

E. Theocharous, “Absolute linearity measurements on a PbSe detector in the infrared,” Infrared Phys. Technol. 50(1), 63–69 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[CrossRef]

Proc. SPIE (1)

M. C. Foote, T. R. Krueger, J. T. Schofield, D. J. McCleese, T. A. McCann, E. W. Jones, and M. R. Dickie, “Space science application of thermopile detector arrays,” Proc. SPIE 4999, 443–447 (2003).
[CrossRef]

Other (2)

J. Y. Wong and M. Schell, “Zero drift NDIR gas sensors,” Sen. Rev. 31, 70–77 (2011); also published as “Absorption biased gas sensors,” patent application WO/2011/022558 [US2010/046030] (Feb. 24, 2011).

J. G. Crowder, S. D. Smith, A. Vass, and K. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, Vol. 118 of Springer Series in Optical Sciences (Springer, New York, 2006), pp. 595–613.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

White’s cell multi-pass diagram for NDIR gas monitoring (4 pass in the figure). Blue color is used for chief rays and red color for marginal rays (aperture). The centers of curvature of the objective and field mirrors are indicated as CO, CO’ and CF. Multiple images of the light emitter are projected on the field mirror MF by the objective mirrors MO and MO’. The light beam bounces repeatedly until it is finally projected onto a detector. A band-pass filter, specific of the spectrum target gas, is interposed in the optical path to reduce background noise.

Fig. 2
Fig. 2

Description of the dual-channel optical cavity proposed. Dashed blue line represents the path of the reference channel, formed with the field mirror associated to the objective mirrors MOR and MOR’. The field mirror and the other pair MOS-MOS’ configures the sampling channel with independent path length (beam not drawn). All the mirrors are concave spherical mirrors and they have the same radius of curvature which is also equal to the length of the cavity.

Fig. 3
Fig. 3

Optical association of the mirrors at the cavity. (a) Spot diagram formed over the field mirror by the sampling channel. Light coming from input port (IN) goes to objective mirror MOS and it is then focused back onto the field mirror MF at position 1. From there light is reflected to the conjugated mirror MOS’ and then back to hit mirror MF at position 1’. The series follows the order: IN-MOS-1-MOS’-1’-MOS-2-MOS’-2’-…-MOS-m-MOS’-m’-MOS-OUT. Where m is an arbitrary number, limited by MF size. (b) The objective mirrors are grouped in conjugated couples, one pair for reference (MOR-MOR) and one pair for sampling channel (MOS-MOS). Only one mirror of every pair is finally imaged on an independent detector.

Fig. 4
Fig. 4

Köhler illumination configuration applied at detection for a conventional White’s cell. A simple lens, situated at the exit spot, images the surface of the objective mirror onto the surface of detector. This provides tolerance to beam displacements as indicated by dashed lines. In the figure we draw only the final output of a hypothetical misalignment of any of the objective mirrors.

Fig. 5
Fig. 5

Optical sensor response working in DC mode for gas injections and source bias variations. Above: reference signal (blue line) and sampling signal (red line). Below: optical sensor output (signals ratio) variations.

Fig. 6
Fig. 6

Response step changes in CO concentration from 0 to 30 ppm. Above: Optical sensor. Below: electrochemical sensor for tracking.

Fig. 7
Fig. 7

Above: Optical sensor response to CO concentration variations (~0-20 ppm peak to peak) and drift (from ~4 h to 24 h). 7.3 m path difference and no thermal stabilization, integration time = 76 s. Below: ambient temperature measured at thermopile substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M SR M S M R = C S0 exp(KC N S r) C R0 exp(KC N R r) = C 0 exp[ KC( N S N R )r ] C 0 [ 1KCNr ]

Metrics