Abstract

We present a new technique that combines off-axis Digital Holography and Dark Field Microscopy to track 100nm gold particles diffusing in water. We show that a single hologram is sufficient to localize several particles in a thick sample with a localization accuracy independent of the particle position. From our measurements we reconstruct the trajectories of the particles and derive their 3D diffusion coefficient. Our results pave the way for quantitative studies of the motion of single nanoparticle in complex media.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
    [CrossRef] [PubMed]
  2. J. Bewersdorf, B.T. Bennett, and K.L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Nat. Acad. Sci. USA 103, 18137 (2006).
    [CrossRef] [PubMed]
  3. S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
    [CrossRef] [PubMed]
  4. M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
    [CrossRef] [PubMed]
  5. S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
    [CrossRef] [PubMed]
  6. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  7. E. Leith and J. Upatniek, “Wavefront Reconstruction Photography,” Phys. Today 18, 26 (1965).
    [CrossRef]
  8. H.C. van de Hulst, Light Scattering by Small Particles, (Dovers Publications Inc, 1957).
  9. F.C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D.G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [CrossRef] [PubMed]
  10. F.C. Cheong, S. Duarte, S.H. Lee, and D.G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms” Rheol. Acta 48, 109–115 (2009).
    [CrossRef]
  11. F.C. Cheong, B.J. Krishnatreya, and D.G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [CrossRef] [PubMed]
  12. W. Xu, M.H. Jericho, H.J. Kreuzer, and I.A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
    [CrossRef] [PubMed]
  13. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  14. S.H Lee, Y. Roichman, G.R. Yi, S.H. Kim, S.M. Yang, A. Van Blaaderen, P. Van Oostrum, and D.G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [CrossRef] [PubMed]
  15. M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
    [CrossRef] [PubMed]
  16. E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
    [CrossRef]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  18. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity” Opt. Lett. 32, 909–911 (2007)
    [CrossRef] [PubMed]
  19. P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [CrossRef] [PubMed]
  20. M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Express 33, 500–502 (2008).
  21. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
    [CrossRef] [PubMed]
  22. N. Warnasooriya, F. Joud, F. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
    [CrossRef] [PubMed]
  23. E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18, 17392–17403 (2010).
    [CrossRef] [PubMed]
  24. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010)
    [CrossRef]
  25. F. Dubois and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Opt. Lett. 33, 2605–2607 (2008)
    [CrossRef] [PubMed]
  26. B. Samson, F. Verpillat, M. Gross, and M. Atlan, “Video-rate laser Doppler vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011).
    [CrossRef] [PubMed]
  27. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11780 (2008).
    [CrossRef] [PubMed]
  28. L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
    [CrossRef]
  29. H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 38, 137–143 (2009).
    [CrossRef]
  30. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
    [CrossRef]
  31. L. Yu and M.K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 302092–2094 (2005).
    [CrossRef] [PubMed]
  32. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Express 22, 126–1270 (1997).
  33. M.K. Kim, L. Yu, and C.J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8, S518–S523 (2006).
    [CrossRef]
  34. M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010).
    [CrossRef]
  35. PSF Lab, http://onemolecule.chem.uwm.edu/software .
  36. C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010).
    [CrossRef]

2011 (1)

2010 (6)

2009 (6)

M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
[CrossRef] [PubMed]

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

F.C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D.G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

F.C. Cheong, S. Duarte, S.H. Lee, and D.G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms” Rheol. Acta 48, 109–115 (2009).
[CrossRef]

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 38, 137–143 (2009).
[CrossRef]

2008 (6)

F. Dubois and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Opt. Lett. 33, 2605–2607 (2008)
[CrossRef] [PubMed]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11780 (2008).
[CrossRef] [PubMed]

M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Express 33, 500–502 (2008).

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
[CrossRef] [PubMed]

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (4)

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

J. Bewersdorf, B.T. Bennett, and K.L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Nat. Acad. Sci. USA 103, 18137 (2006).
[CrossRef] [PubMed]

M.K. Kim, L. Yu, and C.J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8, S518–S523 (2006).
[CrossRef]

2005 (1)

2003 (2)

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

W. Xu, M.H. Jericho, H.J. Kreuzer, and I.A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
[CrossRef] [PubMed]

2000 (2)

1997 (1)

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Express 22, 126–1270 (1997).

1994 (1)

1965 (2)

E. Leith and J. Upatniek, “Wavefront Reconstruction Photography,” Phys. Today 18, 26 (1965).
[CrossRef]

E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

Abboud, M.

Absil, É.

M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Express 33, 500–502 (2008).

Ahrenberg, L.

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

Amato-Grill, J.

Atlan, M.

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
[CrossRef] [PubMed]

Bennett, B.T.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

J. Bewersdorf, B.T. Bennett, and K.L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Nat. Acad. Sci. USA 103, 18137 (2006).
[CrossRef] [PubMed]

Bewersdorf, J.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

J. Bewersdorf, B.T. Bennett, and K.L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Nat. Acad. Sci. USA 103, 18137 (2006).
[CrossRef] [PubMed]

Biteen, J.S.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Bun, F.

Chao, J.

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

Cheong, F.C.

Choquet, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Cognet, L.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Collot, L.

Coppey-Moisan, M.

Cuche, E.

Denis, L.

Depeursinge, C.

Desbiolles, P.

Dixon, L.

Dreyfus, R.

Duarte, S.

F.C. Cheong, S. Duarte, S.H. Lee, and D.G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms” Rheol. Acta 48, 109–115 (2009).
[CrossRef]

Dubois, F.

El-Sayed, I.H.

P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M.A.

P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

Fournel, T.

Fournier, C.

Friedrich, L.

Gould, T.J.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Grier, D.G.

Grosfils, P.

Gross, M.

Hennelly, B.M.

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

Hess, S.T.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
[CrossRef] [PubMed]

Ito, T.

Jain, P.K.

P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

Jericho, M.H.

Joud, F.

Juette, M.F

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Jüptner, W.

Kang, H.

H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 38, 137–143 (2009).
[CrossRef]

Katz, J.

Kim, M.K.

Kim, S.H.

Knight, K.L.

J. Bewersdorf, B.T. Bennett, and K.L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Nat. Acad. Sci. USA 103, 18137 (2006).
[CrossRef] [PubMed]

Kreuzer, H.J.

Krishnatreya, B.J.

Le Clerc, F.

Lee, K.S.

P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, S.H

Lee, S.H.

F.C. Cheong, S. Duarte, S.H. Lee, and D.G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms” Rheol. Acta 48, 109–115 (2009).
[CrossRef]

Leith, E.

E. Leith and J. Upatniek, “Wavefront Reconstruction Photography,” Phys. Today 18, 26 (1965).
[CrossRef]

E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

Lessard, M.D.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Liu, N.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Lord, S.J.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Lounis, B.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Malkiel, E.

Mann, C.J.

M.K. Kim, L. Yu, and C.J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8, S518–S523 (2006).
[CrossRef]

Marquet, P.

McDonald, J.B.

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

Meinertzhagen, I.A.

Miura, J.

Mlodzianoski, M.J.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Moerner, W.E.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Nagpure, B.S.

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Nasse, M. J.

Naughton, T.J.

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

Ober, R.J.

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

Onural, L.

H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 38, 137–143 (2009).
[CrossRef]

Page, A.J.

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

Pavani, S.R.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Piestun, R.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Prabhat, P.

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

Ram, S.

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

Rohrbach, A.

Roichman, Y.

Samson, B.

Sato, Y.

Schnars, U.

Shaffer, E.

Sheng, J.

Shimobaba, T.

Speidel, M.

Sun, B.

Takenouchi, M.

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Tessier, G.

Thompson, M.A.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Twieg, R.J.

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

Upatniek, J.

E. Leith and J. Upatniek, “Wavefront Reconstruction Photography,” Phys. Today 18, 26 (1965).
[CrossRef]

Upatnieks, J.

Van Blaaderen, A.

van de Hulst, H.C.

H.C. van de Hulst, Light Scattering by Small Particles, (Dovers Publications Inc, 1957).

Van Oostrum, P.

Verpillat, F.

B. Samson, F. Verpillat, M. Gross, and M. Atlan, “Video-rate laser Doppler vibrometry by heterodyne holography,” Opt. Lett. 36, 1449–1451 (2011).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010)
[CrossRef]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
[CrossRef] [PubMed]

Ward, E.S.

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

Warnasooriya, N.

Woehl, J. C.

Xiao, K.

Xu, W.

Yamaguchi, I.

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Express 22, 126–1270 (1997).

Yang, S.M.

Yaras, F.

H. Kang, F. Yaraş, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 38, 137–143 (2009).
[CrossRef]

Yi, G.R.

Yu, L.

Zhang, T.

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Express 22, 126–1270 (1997).

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
[CrossRef] [PubMed]

Appl. Opt. (4)

Biophys. J. (1)

S. Ram, P. Prabhat, J. Chao, E.S. Ward, and R.J. Ober, “High Accuracy 3D Quantum Dot Tracking with Multi-focal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells,” Biophys. J. 95, 6025 (2008).
[CrossRef] [PubMed]

J. Disp. Technol. (2)

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010)
[CrossRef]

L. Ahrenberg, A.J. Page, B.M. Hennelly, J.B. McDonald, and T.J. Naughton, “Using commodity graphics hardware for realtime digital hologram view-reconstruction,” J. Disp. Technol. 5, 111 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

M.K. Kim, L. Yu, and C.J. Mann, “Interference techniques in digital holography,” J. Opt. A, Pure Appl. Opt. 8, S518–S523 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[CrossRef] [PubMed]

Nat. Methods (1)

M.F Juette, T.J. Gould, M.D. Lessard, M.J. Mlodzianoski, B.S. Nagpure, B.T. Bennett, S.T. Hess, and J. Bewersdorf, “Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008).
[CrossRef] [PubMed]

Opt. Express (9)

F.C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D.G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

S.H Lee, Y. Roichman, G.R. Yi, S.H. Kim, S.M. Yang, A. Van Blaaderen, P. Van Oostrum, and D.G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[CrossRef] [PubMed]

M. Speidel, L. Friedrich, and A. Rohrbach, “Interferometric 3D tracking of several particles in a scanning laser focus,” Opt. Express 17, 1003–1015 (2009).
[CrossRef] [PubMed]

F.C. Cheong, B.J. Krishnatreya, and D.G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
[CrossRef] [PubMed]

M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, and M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Express 33, 500–502 (2008).

N. Warnasooriya, F. Joud, F. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
[CrossRef] [PubMed]

E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18, 17392–17403 (2010).
[CrossRef] [PubMed]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776–11780 (2008).
[CrossRef] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Express 22, 126–1270 (1997).

Opt. Lett. (6)

Phys. Today (1)

E. Leith and J. Upatniek, “Wavefront Reconstruction Photography,” Phys. Today 18, 26 (1965).
[CrossRef]

Proc. Nat. Acad. Sci. USA (3)

J. Bewersdorf, B.T. Bennett, and K.L. Knight, “H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy,” Proc. Nat. Acad. Sci. USA 103, 18137 (2006).
[CrossRef] [PubMed]

S.R. Pavani, M.A. Thompson, J.S. Biteen, S.J. Lord, N. Liu, R.J. Twieg, R. Piestun, and W.E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Nat. Acad. Sci. USA 106, 2995 (2009).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Nat. Acad. Sci. USA 100, 11350 (2003).
[CrossRef] [PubMed]

Rheol. Acta (1)

F.C. Cheong, S. Duarte, S.H. Lee, and D.G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms” Rheol. Acta 48, 109–115 (2009).
[CrossRef]

Science (1)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810 (2008).
[CrossRef] [PubMed]

Other (2)

H.C. van de Hulst, Light Scattering by Small Particles, (Dovers Publications Inc, 1957).

PSF Lab, http://onemolecule.chem.uwm.edu/software .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. The sample is located in the X,Y plane. Z is the optical axis of the microscope objective

Fig. 2
Fig. 2

a: Intensity |(kx, ky)| in logarithmic scale. The zero-order term appears as a red square distorted by the multiplication with the phase matrix M. The term of interest is located in the down-right corner. b: |H̃(kx, ky)| when the average of the ten previous holograms is subtracted before calculating the FFT. The zero-order term is largely removed, so the recovery between this term and the region of interest in the down-right corner is reduced. c: Two-dimensional reconstruction at a fixed depth of the sample. A gold nanobead (1) is localized in this plan and the shape of the intensity of the field scattered by other beads at other depths (2 and 3) is visible. d: Intensity |(kx, ky)| in logarithmic scale when the sample is replaced by a diffusive paper. The area of the output pupil of the objective is sharply defined. The white-dotted circle shows the mask of the numerical filter used for the reconstruction.

Fig. 3
Fig. 3

PSF of the field’s intensity for a 100nm nanobead, (a) in X, (b) Y, (c) and in the Z direction. (d) shows the top of the curve (c) (blue points) and the polynomial fit (green solid line).

Fig. 4
Fig. 4

Localization accuracy as a function of the distance between the bead and the focal plane. (a) Lateral localization accuracy in X (blue line) and Y (red line). (b) Axial localization accuracy.

Fig. 5
Fig. 5

Mean axial position of an embedded particle, estimated using the reconstruction algorithm, as a function of the mechanical displacement of the sample along Z.

Fig. 6
Fig. 6

3D trajectories of 3 particles (red, green, blue) reconstructed from 200 successive frames. The focal plane (Z = 0) was set at about 150μm above the coverslip. Although this setting is not optimal for tracking a particle diffusing around the focal plane, as explained in section 4.1, trajectory reconstruction is still possible (red trajectory).

Fig. 7
Fig. 7

Mean Square Displacement curves derived from the trajectory of a nanoparticle in Brownian motion (200 points, time step Δt = 44 ms). (a) 3D MSD, (b) MSD along X, (c) MSD along Y and (d) MSD along Z. Blue line: linear fit over the first 6 points of the MSD.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ccd = I ref + I scatt + E ref E scatt * + E scatt E ref *
M ( x , y , d ) = exp ( i π ( x 2 + y 2 ) λ d ) ,
H ˜ ( k x , k y ) = F F T [ I c c d × M ] .
K ˜ ( k x , k y , z ) = exp ( i z × k 0 2 k i 2 k j 2 )
k 0 = 2 π n λ , k x = 2 π ( x 256 ) 512 × Δ pix , k y = 2 π ( y 256 ) 512 × Δ pix
H ( x , y , n δ z ) = F F T 1 [ H ˜ ( k x , k y ) × K ˜ ( k x , k y , n δ z ) ] ,
D = k B T 6 π η r = 4.2 ± 0.2 μ m 2 s 1 ,
MSD ( n Δ t ) = 1 N n ( i = 1 n N ( x i + n x i ) 2 + ( y i + n y i ) 2 + ( z i + n z i ) 2 ) ,

Metrics