Abstract

We reported the enhancement of light scattering in the urchin-aggregation shaped closely-packed hierarchical ZnO nanostructures, fabricated by a simple and scalable process based on the hydrothermal method utilizing the silica microspheres monolayer as a two-dimensional periodic template. From theoretical predictions, the diffuse light scattering is closely related to the size of silica microspheres as light diffusion centers. Moreover, the ZnO nanorod arrays on silica microspheres monolayer provide the further enhancement of light scattering. The experimentally fabricated urchin-aggregation shaped ZnO nanostructures using silica microspheres of 970 nm indicated a high density of ZnO nanorods with a wide bending angle, which led to the largely increased photoluminescence intensity and a high transmittance haze ratio of > 70% in the wavelength range of 400-900 nm in keeping with a high total transmittance. The contact angles of a water droplet on the surface of the samples were also explored.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
    [CrossRef] [PubMed]
  2. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
    [CrossRef]
  3. S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
    [CrossRef] [PubMed]
  4. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
    [CrossRef] [PubMed]
  5. A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
    [CrossRef] [PubMed]
  6. Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
    [CrossRef] [PubMed]
  7. Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
    [CrossRef]
  8. J. H. Kim and K. J. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C 115(15), 7218–7224 (2011).
    [CrossRef]
  9. J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008).
    [CrossRef] [PubMed]
  10. Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
    [CrossRef]
  11. M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
    [CrossRef]
  12. J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
    [CrossRef] [PubMed]
  13. J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
    [CrossRef]
  14. J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
    [CrossRef]
  15. Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
    [CrossRef]
  16. Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011).
    [CrossRef] [PubMed]
  17. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
    [CrossRef] [PubMed]
  18. B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
    [CrossRef]
  19. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
    [CrossRef]
  20. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
    [CrossRef] [PubMed]
  21. T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
    [CrossRef]
  22. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
    [CrossRef] [PubMed]
  23. M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
    [CrossRef] [PubMed]
  24. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
    [CrossRef] [PubMed]
  25. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  26. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  27. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010).
    [CrossRef] [PubMed]
  28. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
    [CrossRef]
  29. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
    [CrossRef] [PubMed]
  30. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  31. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
    [CrossRef]
  32. J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
    [CrossRef]
  33. Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
    [CrossRef] [PubMed]
  34. R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
    [CrossRef]
  35. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  36. S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
    [CrossRef] [PubMed]
  37. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]

2011

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

J. H. Kim and K. J. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C 115(15), 7218–7224 (2011).
[CrossRef]

Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011).
[CrossRef] [PubMed]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[CrossRef] [PubMed]

2010

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
[CrossRef]

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010).
[CrossRef] [PubMed]

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

2009

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009).
[CrossRef] [PubMed]

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
[CrossRef]

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[CrossRef]

2008

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008).
[CrossRef] [PubMed]

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[CrossRef]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

2007

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

2006

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

2005

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

1966

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Andersson, B. V.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bechelany, M.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Cansizoglu, M. F.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
[CrossRef] [PubMed]

Cao, G.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[CrossRef]

Chan, W. K.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Chang, S.

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Chao, Y. C.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Cheah, K. W.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Chen, C. H.

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Chen, C. W.

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Chen, C. Y.

Chen, G.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Chen, J.

J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
[CrossRef]

Chen, J. Y.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

Chen, L.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Cheung, W. S.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Choi, D. G.

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

Choi, D. H.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Choi, J. Y.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Choi, M. Y.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Chu, T. H.

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Chueh, Y. L.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Dai, Y. A.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Dandeneau, C. S.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[CrossRef]

Delaunay, J. J.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

Dewan, R.

Djurišic, A. B.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Donsanti, F.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Elias, J.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[CrossRef]

Engelken, R.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
[CrossRef] [PubMed]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Fan, Z.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Fong, P. W. K.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

Grigoropoulos, C. P.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Gwo, S.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Hamakawa, Y.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Han, S. E.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

He, J. H.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

He, Z. B.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Hong, S. J.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hsu, Y. F.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Huang, D. M.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
[CrossRef]

Huang, J. J.

Huang, J. Z.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Inganäs, O.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
[CrossRef]

Jamshidi, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Jang, S. G.

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Javey, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Jehl, Z.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Jin, M. J.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Kang, H. W.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Kapadia, R.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Karabacak, T.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
[CrossRef] [PubMed]

Kiang, Y. W.

Kim, I. S.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Kim, J. H.

J. H. Kim and K. J. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C 115(15), 7218–7224 (2011).
[CrossRef]

Kim, J. M.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Kim, S. H.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Kim, S. R.

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

Kim, S. S.

J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008).
[CrossRef] [PubMed]

Kim, S. W.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Knipp, D.

Ko, S. H.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Ko, Y. H.

Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011).
[CrossRef] [PubMed]

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[CrossRef] [PubMed]

Ku, C. H.

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Lee, C. S.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Lee, D. H.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Lee, J. Y.

Lee, S. T.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Lee, S. Y.

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Leem, J. W.

Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011).
[CrossRef] [PubMed]

Lei, W.

J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
[CrossRef]

Leu, P. W.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Leung, Y. H.

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Lévy-Clément, C.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[CrossRef]

Li, N.

Li, Y.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

Lin, C. A.

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

Lin, C. C.

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Lin, Y. Y.

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Lincot, D.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Lui, H. F.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Luo, L. B.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Marinkovic, M.

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Michler, J.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Minemoto, T.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Moulé, A. J.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
[CrossRef]

Murozono, M.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Naghavi, N.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Nam, K. H.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Ng, A. M. C.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Noriega, R.

Okamoto, C.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Omae, S.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Park, J. Y.

J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008).
[CrossRef] [PubMed]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Peumans, P.

Phadke, S.

Philippe, L.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Pillai, S.

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Qin, S.

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Rathore, A. A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Renou, G.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Rousset, J.

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Ruebusch, D. J.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Salleo, A.

Seo, H. W.

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
[CrossRef] [PubMed]

Shao, Z.

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Simonnet, M.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

Song, D. E.

J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008).
[CrossRef] [PubMed]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Su, W. F.

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Sun, K. W.

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

Sun, X. W.

J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
[CrossRef]

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Sung, H. J.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Surya, C.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Takakura, H.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Takei, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Tam, H. L.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Tao, M.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Tena-Zaera, R.

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[CrossRef]

Tsai, F. J.

Valle, F. D.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

Wang, G. Y.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Wang, J. X.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Wang, J. Y.

Wang, Z.

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Wen, L.

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Wu, C. M. L.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Wu, D.

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Wu, J. J.

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Wu, M.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Xi, Y. Y.

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Xu, Z.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Yamada, I.

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

Yang, C. C.

Yang, H.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Yang, S. M.

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Yen, W. C.

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

Yeo, J. Y.

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

Yong, K. J.

J. H. Kim and K. J. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C 115(15), 7218–7224 (2011).
[CrossRef]

Yu, H. K.

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

Yu, J. S.

Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011).
[CrossRef] [PubMed]

Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Yu, K. S.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Yuan, G. D.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Zhang, Q.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[CrossRef]

Zhang, W. J.

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

Zhang, X.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

Zhao, D. W.

J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
[CrossRef]

Zhou, W.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Zhou, X.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[CrossRef]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

ACS Nano

M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano 4(2), 733–740 (2010).
[CrossRef] [PubMed]

Adv. Mater.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Adv. Mater. 21(41), 4087–4108 (2009).
[CrossRef]

M. Y. Choi, D. H. Choi, M. J. Jin, I. S. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, “Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods,” Adv. Mater. 21(21), 2185–2189 (2009).
[CrossRef]

J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, “Hollow urchin-like ZnO thin films by electrochemical deposition,” Adv. Mater. 22(14), 1607–1612 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94(4), 043302 (2009).
[CrossRef]

Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku, and J. J. Wu, “Near-ultraviolet photodetector based on hybrid polymer/zinc oxide nanorods by low-temperature solution processes,” Appl. Phys. Lett. 92(23), 233301 (2008).
[CrossRef]

R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “ZnO nanowire arrays: optical scattering and sensitization to solar light,” Appl. Phys. Lett. 93(23), 233119 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Chen, D. W. Zhao, W. Lei, and X. W. Sun, “Cosensitized solar cells based on a flower-like ZnO nanorod structure,” IEEE J. Sel. Top. Quantum Electron. 16(6), 1607–1610 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys.

W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007).
[CrossRef]

Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, and S. Qin, “Influence of carrier concentration on piezoelectric potential in a bent ZnO nanorod,” J. Appl. Phys. 108(12), 124312 (2010).
[CrossRef]

J. Mater. Chem.

Y. Y. Lin, C. W. Chen, T. H. Chu, W. F. Su, C. C. Lin, C. H. Ku, J. J. Wu, and C. H. Chen, “Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,” J. Mater. Chem. 17(43), 4571–4576 (2007).
[CrossRef]

Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem. 20(37), 8134–8138 (2010).
[CrossRef]

J. Phys. Chem. C

J. X. Wang, C. M. L. Wu, W. S. Cheung, L. B. Luo, Z. B. He, G. D. Yuan, W. J. Zhang, C. S. Lee, and S. T. Lee, “Synthesis of hierarchical porous ZnO disklike nanostructures for improved photovoltaic properties of dye-sensitized solar cells,” J. Phys. Chem. C 114(31), 13157–13161 (2010).
[CrossRef]

J. H. Kim and K. J. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C 115(15), 7218–7224 (2011).
[CrossRef]

Jpn. J. Appl. Phys.

T. Minemoto, C. Okamoto, S. Omae, M. Murozono, H. Takakura, and Y. Hamakawa, “Fabrication of spherical silicon solar cells with semi-light-concentration system,” Jpn. J. Appl. Phys. 44(7A), 4820–4824 (2005).
[CrossRef]

Nano Lett.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010).
[CrossRef] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. S. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

S. H. Ko, D. H. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, “Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell,” Nano Lett. 11(2), 666–671 (2011).
[CrossRef] [PubMed]

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[CrossRef] [PubMed]

Nanotechnology

A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, and C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra,” Nanotechnology 20(44), 445201 (2009).
[CrossRef] [PubMed]

Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology 20(4), 045501 (2009).
[CrossRef] [PubMed]

J. Y. Park, D. E. Song, and S. S. Kim, “An approach to fabricating chemical sensors based on ZnO nanorod arrays,” Nanotechnology 19(10), 105503 (2008).
[CrossRef] [PubMed]

Y. H. Ko, J. W. Leem, and J. S. Yu, “Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures,” Nanotechnology 22(20), 205604 (2011).
[CrossRef] [PubMed]

Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express

Small

A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

S. M. Yang, S. G. Jang, D. G. Choi, S. R. Kim, and H. K. Yu, “Nanomachining by colloidal lithography,” Small 2(4), 458–475 (2006).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

J. Y. Chen and K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells,” Sol. Energy Mater. Sol. Cells 94(5), 930–934 (2010).
[CrossRef]

S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells 94(9), 1481–1486 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated electric fields of light passing through the (a) ITO/glass, (b) silica microspheres (300 nm)/ITO/glass, (c) silica microspheres (1 μm)/ITO/glass, and (d) ZnO nanorods (0.8 μm height, 50 nm size)/silica microspheres (1 μm)/ITO/glass. The thickness of ITO film is fixed at 200 nm.

Fig. 2
Fig. 2

Schematic diagram and SEM images of the fabrication process of urchin-aggregation shaped ZnO nanostructures on ITO/glass by the hydrothermal method using a thin sputtered AZO seed layer. The SEM images show (i) the monolayer of silica microspheres of 970 nm on ITO/glass, (ii) the deposited AZO on upper middle part of silica microspheres of 970 nm, and (iii) the ZnO NRAs on AZO/silica microspheres of 970 nm/ITO/glass.

Fig. 3
Fig. 3

(a) Top-view and cross-sectional SEM images of the ZnO NRAs on (i) AZO/ITO/glass and AZO/silica microspheres of (ii) 320 nm, (iii) 540 nm, and (iv) 970 nm/ITO/glass, and (b) PL spectra of the corresponding samples. The 2θ scan XRD patterns are also shown in the inset of (b).

Fig. 4
Fig. 4

Measured TT as a function of wavelength for the ITO/glass, ZnO NRAs on AZO/ITO/glass, and ZnO NRAs on AZO/silica microspheres of 320 nm, 540 nm, and 970 nm/ITO/glass. The inset shows the corresponding TD as function of wavelength.

Fig. 5
Fig. 5

Measured HT as a function of wavelength for the ITO/glass, ZnO NRAs on AZO/ITO/glass, and ZnO NRAs on AZO/silica microspheres of 320 nm, 540 nm, and 970 nm/ITO/glass, The insets show oblique-view SEM images and photographs of the water droplets for ZnO NRAs on ITO/glass with and without silica microspheres of 970 nm.

Metrics