Abstract

Coherent anti-Stokes Raman scattering (CARS) with femtosecond interaction pulses has become a popular and powerful spectroscopic method. Non-resonant background is one of the most limiting factors for implementing this method more widely. We propose a new approach that suppresses the non-resonant background contribution to the measured signal in CARS spectroscopy while simultaneously yielding high spectral resolution. The method is based on femtosecond pulse shaping of probe, Stokes and pump beams. Destructive interference suppresses the non-resonant background, resulting only in the resonant contribution being detected.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31(8-9), 653–667 (2000).
    [CrossRef]
  2. T. Joo, M. A. Dugan, and A. C. Albrecht, “Time-resolved coherent Stokes Raman spectroscopy (CSRS) of benzene,” Chem. Phys. Lett. 177(1), 4–10 (1991).
    [CrossRef]
  3. M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
    [CrossRef]
  4. T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
    [CrossRef]
  5. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
    [CrossRef] [PubMed]
  6. C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
    [CrossRef]
  7. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  8. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
    [CrossRef] [PubMed]
  9. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  10. S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
    [CrossRef] [PubMed]
  11. G. L. Eesley, Coherent Raman Spectroscopy (Pergamon Press, 1981).
  12. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [CrossRef] [PubMed]
  13. F. M. Kamga and M. G. Sceats, “Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy: a method for suppression of the nonresonant background,” Opt. Lett. 5(3), 126–128 (1980).
    [CrossRef] [PubMed]
  14. S. O. Konorov, R. F. B. Turner, and M. W. Blades, “Background-free coherent anti-stokes Raman scattering of gas- and liquid-phase samples in a mesoporous silica aerogel host,” Appl. Spectrosc. 61(5), 486–489 (2007).
    [CrossRef] [PubMed]
  15. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
    [CrossRef] [PubMed]
  16. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
    [CrossRef] [PubMed]
  17. S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
    [CrossRef]
  18. S. O. Konorov, M. W. Blades, and R. F. B. Turner, “Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Spectrosc. 64(7), 767–774 (2010).
    [CrossRef] [PubMed]
  19. M. Jurna, J. L. Herek, and H. L. Offerhaus, “Implementation of vibrational phase contrast coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 50(13), 1839–1842 (2011).
    [CrossRef] [PubMed]
  20. X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, G. R. Welch, and M. O. Scully, “Heterodyne coherent anti-Stokes Raman scattering for spectral phase retrieval and signal amplification,” Opt. Lett. 35(5), 721–723 (2010).
    [PubMed]
  21. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [CrossRef] [PubMed]

2011

2010

2009

S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
[CrossRef]

2008

2007

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

S. O. Konorov, R. F. B. Turner, and M. W. Blades, “Background-free coherent anti-stokes Raman scattering of gas- and liquid-phase samples in a mesoporous silica aerogel host,” Appl. Spectrosc. 61(5), 486–489 (2007).
[CrossRef] [PubMed]

2006

2005

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

2004

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2003

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

2002

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

2001

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

2000

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31(8-9), 653–667 (2000).
[CrossRef]

1999

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1997

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

1991

T. Joo, M. A. Dugan, and A. C. Albrecht, “Time-resolved coherent Stokes Raman spectroscopy (CSRS) of benzene,” Chem. Phys. Lett. 177(1), 4–10 (1991).
[CrossRef]

1980

Albrecht, A. C.

T. Joo, M. A. Dugan, and A. C. Albrecht, “Time-resolved coherent Stokes Raman spectroscopy (CSRS) of benzene,” Chem. Phys. Lett. 177(1), 4–10 (1991).
[CrossRef]

Beadie, G.

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

Blades, M. W.

Bonn, M.

Book, L. D.

Bryan, J.

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Cheng, J.-X.

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Dugan, M. A.

T. Joo, M. A. Dugan, and A. C. Albrecht, “Time-resolved coherent Stokes Raman spectroscopy (CSRS) of benzene,” Chem. Phys. Lett. 177(1), 4–10 (1991).
[CrossRef]

Glover, C. H.

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

Gross, P.

Hepburn, J. W.

S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
[CrossRef]

Herek, J. L.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Joo, T.

T. Joo, M. A. Dugan, and A. C. Albrecht, “Time-resolved coherent Stokes Raman spectroscopy (CSRS) of benzene,” Chem. Phys. Lett. 177(1), 4–10 (1991).
[CrossRef]

Jurna, M.

Kamga, F. M.

Kattawar, G. W.

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Kiefer, W.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Knopp, G.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Kompa, K.-L.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

Konorov, S. O.

S. O. Konorov, M. W. Blades, and R. F. B. Turner, “Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Spectrosc. 64(7), 767–774 (2010).
[CrossRef] [PubMed]

S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
[CrossRef]

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

S. O. Konorov, R. F. B. Turner, and M. W. Blades, “Background-free coherent anti-stokes Raman scattering of gas- and liquid-phase samples in a mesoporous silica aerogel host,” Appl. Spectrosc. 61(5), 486–489 (2007).
[CrossRef] [PubMed]

Korterik, J. P.

Lang, T.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

Lucht, R. P.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Materny, A.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Milner, V.

S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
[CrossRef]

Motzkus, M.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

Müller, M.

Offerhaus, H. L.

Ooi, C. H.

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

Opatrný, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Piret, J. M.

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

Postma, S.

Potma, E. O.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Reintjes, J. F.

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

Rinia, H. A.

Rostovtsev, Y.

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

Sceats, M. G.

Schmitt, M.

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

Schulze, H. G.

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

Scully, M. O.

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, G. R. Welch, and M. O. Scully, “Heterodyne coherent anti-Stokes Raman scattering for spectral phase retrieval and signal amplification,” Opt. Lett. 35(5), 721–723 (2010).
[PubMed]

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Sokolov, A. V.

X. Wang, A. Zhang, M. Zhi, A. V. Sokolov, G. R. Welch, and M. O. Scully, “Heterodyne coherent anti-Stokes Raman scattering for spectral phase retrieval and signal amplification,” Opt. Lett. 35(5), 721–723 (2010).
[PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Turner, R. F. B.

van Haastert, P. J. M.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

van Rhijn, A. C. W.

Vartiainen, E. M.

Wang, X.

Welch, G. R.

Wiersma, D. A.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

Xie, X. S.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Xu, X. G.

S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
[CrossRef]

Zhang, A.

Zheltikov, A. M.

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31(8-9), 653–667 (2000).
[CrossRef]

Zhi, M.

Zubairy, M. S.

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Anal. Chem.

S. O. Konorov, C. H. Glover, J. M. Piret, J. Bryan, H. G. Schulze, M. W. Blades, and R. F. B. Turner, “In situ analysis of living embryonic stem cells by coherent anti-stokes Raman microscopy,” Anal. Chem. 79(18), 7221–7225 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

Chem. Phys. Lett.

T. Joo, M. A. Dugan, and A. C. Albrecht, “Time-resolved coherent Stokes Raman spectroscopy (CSRS) of benzene,” Chem. Phys. Lett. 177(1), 4–10 (1991).
[CrossRef]

M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-Stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270(1-2), 9–15 (1997).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310(1-2), 65–72 (1999).
[CrossRef]

J. Phys. Chem. B

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

J. Raman Spectrosc.

A. M. Zheltikov, “Coherent anti-Stokes Raman scattering: from proof-of-the-principle experiments to femtosecond CARS and higher order wave-mixing generalizations,” J. Raman Spectrosc. 31(8-9), 653–667 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. O. Konorov, X. G. Xu, J. W. Hepburn, and V. Milner, “Narrowband spectroscopy by an all-optical correlation of broadband laser pulses,” Phys. Rev. A 79(3), 031801 (2009).
[CrossRef]

C. H. Ooi, G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, “Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores,” Phys. Rev. A 72(2), 023807 (2005).
[CrossRef]

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 10994–11001 (2002).
[CrossRef] [PubMed]

Other

G. L. Eesley, Coherent Raman Spectroscopy (Pergamon Press, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental scheme. One narrow-band pump and two narrow-band Stokes beams excite two non-resonant only contributing states (a) and one Raman active state (b). Two narrow-band probe beams with frequencies that differ by the same amount as the two Stokes beams are scattered from two levels generating CARS signals at three possible frequencies. The CARS signal at the central frequency is comprised of contributions from two different paths. In the case of a non-resonant contribution only, this central signal can be suppressed if there is destructive interference between both paths (a, lower spectrum) or can be enhanced if there is constructive interference (a, upper spectrum). Destructive interference with one Raman level (b) results in the Resonance contribution only in the signal at the central frequency (b, spectrum).

Fig. 2
Fig. 2

Simulated Raman spectrum with a single resonant peak only (red, Γ=4cm−1) and the same spectrum with non-resonant background (blue). Spectra of the Stokes and Probe pulses (black).

Fig. 3
Fig. 3

Modeled CARS spectra at different frequency of the pump beam.

Fig. 4
Fig. 4

Sum of CARS spectra obtained at different wavelengths of the pump beam. (Blue) corresponds to the sum of the low-frequency CARS components of Fig. 3. (Black) corresponds to the sum of the central-frequency CARS components of Fig. 3. (Green) corresponds to the CARS signal obtained with single frequency pump, Stokes and probe from the single Raman line on top of the non-resonant background (as in Fig. 2, blue). (Red) corresponds to the CARS signal obtained with single frequency pump, Stokes and probe from single Raman line without the non-resonant background (as in Fig. 2, red).

Fig. 5
Fig. 5

Experimental setup.

Fig. 6
Fig. 6

Spontaneous Raman spectrum of ethanol (red), and CARS spectrum (blue) recorded with broadband pump/Stokes and narrow-band probe.

Fig. 7
Fig. 7

CARS spectra from neat ethanol at different values of the central wavelength of the narrow-band pump wave (a). Sum of all CARS spectra obtained at different wavelengths of the Pump beam (b, black). Part of spontaneous Raman spectra covered by pump-Stokes excitation (b, red). CARS spectra obtained at 1060nm probe beam wavelength. The shaded sliding rectangle represents the part of the spectrum used for integrating over the CARS signal with suppressed non-resonant background (c). Sum of all CARS spectra without non-resonant background obtained at different wavelengths of the pump beam (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(Ω)=( n C n Ω Ω n i Γ n + C NR ) E p (ω) E s (ωΩ)dω,
P as (3) (ω) A(Ω) E pr (ωΩ)dΩ ,

Metrics