Abstract

We investigated an all-fiber picosecond Raman shifter, pumped by an amplified gain switched laser diode in detail. The Raman shifter emitted ps pulses simultaneously at 8 different central wavelengths in the region between 1.06 µm and 1.59 µm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985).
    [CrossRef]
  2. K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988).
    [CrossRef]
  3. H. Ohta and T. Oki, “310-Femtosecond optical pulse generation from a gain-switched laser diode using soliton compression,” Jpn. J. Appl. Phys. 33(Part 2, No. 11B), L1604–L1606 (1994).
    [CrossRef]
  4. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
    [CrossRef]
  5. Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
    [CrossRef]
  6. S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express 19(3), 1854–1859 (2011).
    [CrossRef] [PubMed]
  7. F. Balembois, M. Gaignet, P. Georges, A. Brun, N. Stelmakh, and J. M. Lourtioz, “Tunable picosecond blue and ultraviolet pulses from a diode-pumped laser system seeded by a gain-switched laser diode,” Appl. Opt. 37(21), 4876–4880 (1998).
    [CrossRef] [PubMed]
  8. K. Lauritsen, S. Riecke, M. Langkopf, D. Klemme, C. Kaleva, C. Pallassis, S. McNeil, and R. Erdmann, “Fiber amplified and frequency doubled diode lasers as a highly flexible pulse source at 532nm,” Proc. SPIE Vol. 68721, 68711L (2008).
  9. A. Fragemann, V. Pasiskevicius, and F. Laurell, “Optical parametric amplification of a gain-switched picosecond laser diode,” Opt. Express 13(17), 6482–6489 (2005).
    [CrossRef] [PubMed]
  10. Y. T. Cho, M. Alahbabi, M. J. Gunning, and T. P. Newson, “50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification,” Opt. Lett. 28(18), 1651–1653 (2003).
    [CrossRef] [PubMed]
  11. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
    [CrossRef]
  12. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
    [CrossRef]
  13. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
    [CrossRef]
  14. S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007).
    [CrossRef]
  15. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010).
    [CrossRef] [PubMed]
  16. M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008).
    [CrossRef] [PubMed]
  17. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28(19), 1820–1822 (2003).
    [CrossRef] [PubMed]
  18. D. Lin, S. U. Alam, P. S. Teh, K. K. Chen, and D. J. Richardson, “Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA,” Opt. Express 19(3), 2085–2092 (2011).
    [CrossRef] [PubMed]
  19. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  20. D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
    [CrossRef]
  21. F. Vanholsbeeck, S. Coen, P. Emplit, C. Martinelli, and T. Sylvestre, “Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering,” Opt. Lett. 29(9), 998–1000 (2004).
    [CrossRef] [PubMed]
  22. R. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1(4), 652–657 (1984).
    [CrossRef]

2011

2010

2008

2007

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007).
[CrossRef]

2006

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

2005

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
[CrossRef]

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Optical parametric amplification of a gain-switched picosecond laser diode,” Opt. Express 13(17), 6482–6489 (2005).
[CrossRef] [PubMed]

2004

2003

2002

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

1999

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

1998

1994

H. Ohta and T. Oki, “310-Femtosecond optical pulse generation from a gain-switched laser diode using soliton compression,” Jpn. J. Appl. Phys. 33(Part 2, No. 11B), L1604–L1606 (1994).
[CrossRef]

1993

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[CrossRef]

1988

K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988).
[CrossRef]

1985

N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985).
[CrossRef]

1984

Alahbabi, M.

Alam, S. U.

Aleksoff, C. C.

Alexander, V. V.

Balembois, F.

Banerjee, A.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Bhadra, S. K.

Brun, A.

Chen, K. K.

Cho, Y. T.

Clarke, F.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Codemard, C.

Coen, S.

Davidson, D.

Duan, Z.

Dupriez, P.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Emplit, P.

Fragemann, A.

Frede, M.

Gaignet, M.

Gao, W.

Georges, P.

Ghosh, D.

Grukh, D. A.

D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
[CrossRef]

Gunning, M. J.

Hayes, J. R.

Hickey, L. M. B.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Hyyppä, J.

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007).
[CrossRef]

Ibsen, M.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Imai, H.

K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988).
[CrossRef]

Inaba, H.

N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985).
[CrossRef]

Ishikawa, H.

K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988).
[CrossRef]

Islam, M. N.

Ito, H.

N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985).
[CrossRef]

Jain, R. K.

Jeong, Y.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Kaasalainen, S.

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007).
[CrossRef]

Kamite, K.

K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988).
[CrossRef]

Kanzelmeyer, S.

Kim, K.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Klooster, A.

Kracht, D.

Kramer, G.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Kumar, M.

Kurkov, A. S.

D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
[CrossRef]

Laurell, F.

Lee, C.

Levchenko, A. E.

D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
[CrossRef]

Liao, M.

Lin, D.

Lindroos, T.

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007).
[CrossRef]

Lourtioz, J. M.

Ma, X.

Maillotte, H.

Malinowski, A.

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Martinelli, C.

Matsui, Y.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

Mori, K.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[CrossRef]

Morioka, T.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[CrossRef]

Mukherjee, B.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Mussot, A.

Neumann, J.

Newson, T. P.

Nilsson, J.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Ohishi, Y.

Ohta, H.

H. Ohta and T. Oki, “310-Femtosecond optical pulse generation from a gain-switched laser diode using soliton compression,” Jpn. J. Appl. Phys. 33(Part 2, No. 11B), L1604–L1606 (1994).
[CrossRef]

Oki, T.

H. Ohta and T. Oki, “310-Femtosecond optical pulse generation from a gain-switched laser diode using soliton compression,” Jpn. J. Appl. Phys. 33(Part 2, No. 11B), L1604–L1606 (1994).
[CrossRef]

Onodera, N.

N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985).
[CrossRef]

Pal, M.

Pamaranov, V. M.

D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
[CrossRef]

Park, Y.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Pasiskevicius, V.

Pelusi, M. D.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

Piper, A.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Price, J. H. V.

Provino, L.

Qin, G.

Richardson, D. J.

Sahu, J. K.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Saruwatari, M.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[CrossRef]

Sayinc, H.

Song, H.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Stelmakh, N.

Stolen, R.

Suzuki, A.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

Suzuki, T.

Sylvestre, T.

Teh, P. S.

Terry, F. L.

Theeg, T.

Thomsen, B. C.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Vanholsbeeck, F.

Xia, C.

Yan, X.

Yang, S.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

Zervas, M. N.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. Kamite, H. Ishikawa, and H. Imai, “Single-longitudinal-mode operation of DFB-lasers in gain-switched operating conditions,” Electron. Lett. 24(15), 933–934 (1988).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres,” Electron. Lett. 29(10), 862–864 (1993).
[CrossRef]

IEEE Geosci. Remote Sens. Lett.

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser scource,” IEEE Geosci. Remote Sens. Lett. 4(2), 211–215 (2007).
[CrossRef]

IEEE J. Quantum Electron.

N. Onodera, H. Ito, and H. Inaba, “Generation and control of bandwidth-limited single-mode picosecond optical pulses by strong RF modulation of a distributed feedback In GaAs diode laser,” IEEE J. Quantum Electron. 21(6), 568–575 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett. 11(10), 1217–1219 (1999).
[CrossRef]

IEEE Photonic Technol. Lett.

P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photonic Technol. Lett. 18(9), 1013–1015 (2006).
[CrossRef]

J. Opt. Networking

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Networking 4(11), 737–758 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

H. Ohta and T. Oki, “310-Femtosecond optical pulse generation from a gain-switched laser diode using soliton compression,” Jpn. J. Appl. Phys. 33(Part 2, No. 11B), L1604–L1606 (1994).
[CrossRef]

Opt. Express

A. Fragemann, V. Pasiskevicius, and F. Laurell, “Optical parametric amplification of a gain-switched picosecond laser diode,” Opt. Express 13(17), 6482–6489 (2005).
[CrossRef] [PubMed]

M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008).
[CrossRef] [PubMed]

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010).
[CrossRef] [PubMed]

S. Kanzelmeyer, H. Sayinc, T. Theeg, M. Frede, J. Neumann, and D. Kracht, “All-fiber based amplification of 40 ps pulses from a gain-switched laser diode,” Opt. Express 19(3), 1854–1859 (2011).
[CrossRef] [PubMed]

D. Lin, S. U. Alam, P. S. Teh, K. K. Chen, and D. J. Richardson, “Selective excitation of multiple Raman Stokes wavelengths (green-yellow-red) using shaped multi-step pulses from an all-fiber PM MOPA,” Opt. Express 19(3), 2085–2092 (2011).
[CrossRef] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Quantum Electron.

D. A. Grukh, A. E. Levchenko, A. S. Kurkov, and V. M. Pamaranov, “Self-Q-switched ytterbium-doped fibre laser with intracavity spectral conversion,” Quantum Electron. 35(5), 442–444 (2005).
[CrossRef]

Other

K. Lauritsen, S. Riecke, M. Langkopf, D. Klemme, C. Kaleva, C. Pallassis, S. McNeil, and R. Erdmann, “Fiber amplified and frequency doubled diode lasers as a highly flexible pulse source at 532nm,” Proc. SPIE Vol. 68721, 68711L (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the GSLD based all-fiber Raman shifter system.

Fig. 2
Fig. 2

Power spectrum after amplification in third fiber amplifier stage (left) and corresponding temporal pulse shape (right).

Fig. 3
Fig. 3

(a) Power spectra after propagation in the Raman fiber at five different transmitted pulse energies on logarithmic scale (b) Temporal power distribution, measured with an ultrafast photodiode without spectral filtering plotted on linear scale.

Fig. 4
Fig. 4

The energy content of each Stokes order except at 1570 nm in the whole Raman cascade is depicted in percent for different pump pulse energies.

Fig. 5
Fig. 5

Pump pulse spectrum and temporal pulse shape at maximum pump energy after spectral filtering of pump pulse [(a) & (b)] and 7th order Stokes pulse [(c) & (d)].

Metrics