Abstract

We present first results on photoconductive THz emitters for 1.55µm excitation. The emitters are based on MBE grown In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS) with high carrier mobility. The high mobility is achieved by spatial separation of photoconductive and trapping regions. Photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer (THz TDS). The high carrier mobility and effective absorption significantly increases the optical-to-THz conversion efficiency with THz bandwidth in excess of 3 THz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
    [CrossRef]
  2. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
    [CrossRef]
  3. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 .
    [CrossRef]
  4. A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
    [CrossRef]
  5. H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
    [CrossRef]
  6. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 .
    [CrossRef]
  7. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-30-7853 .
    [CrossRef] [PubMed]
  8. K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
    [CrossRef]
  9. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 .
    [CrossRef] [PubMed]
  10. K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
    [CrossRef]
  11. M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
    [CrossRef] [PubMed]
  12. C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
    [CrossRef]
  13. J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
    [CrossRef]
  14. K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
    [CrossRef]
  15. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
    [CrossRef]
  16. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005), http://link.aip.org/link/doi/10.1063/1.1901817 .
    [CrossRef]
  17. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
    [CrossRef]
  18. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
    [CrossRef]
  19. R. Wilk, M. Mikulics, K. Biermann, H. Künzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz Time-Domain Spectrometer Based on LT-InGaAs Photoconductive Antennas Exited by a 1.55 μm Fibre Laser, ” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThR2, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4452856&isnumber=4452320 .
  20. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-13-9565 .
    [CrossRef] [PubMed]
  21. A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
    [CrossRef]
  22. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
    [CrossRef]
  23. O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
    [CrossRef]
  24. J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
    [CrossRef]
  25. H. Hoenow, H.-G. Bach, J. Böttcher, F. Gueissaz, H. Künzel, F. Scheffer, and C. Schramm, “Deep level Analysis of Si Doped MBE Grown AlInAs Layers, ” Proc. 4th Int. Conf. InP and Rel. Mater., 136–139 (1992), http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00235658 .
  26. J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
    [CrossRef]
  27. H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 61(11), 1347–1349 (1992), http://link.aip.org/link/doi/10.1063/1.107587 .
    [CrossRef]
  28. H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2296 .
    [CrossRef] [PubMed]
  29. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=josab-13-11-2424 .
    [CrossRef]

2011 (2)

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
[CrossRef]

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

2010 (3)

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers,” Opt. Express 18(3), 2296–2301 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2296 .
[CrossRef] [PubMed]

2009 (1)

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

2008 (2)

2007 (2)

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

2006 (1)

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

2005 (3)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005), http://link.aip.org/link/doi/10.1063/1.1901817 .
[CrossRef]

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

2003 (1)

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

2000 (1)

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

1997 (3)

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 .
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-30-7853 .
[CrossRef] [PubMed]

1996 (2)

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=josab-13-11-2424 .
[CrossRef]

1992 (1)

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 61(11), 1347–1349 (1992), http://link.aip.org/link/doi/10.1063/1.107587 .
[CrossRef]

1991 (1)

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

1990 (1)

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 .
[CrossRef]

1986 (1)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

1985 (1)

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Adomavicius, R.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Aina, O.

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

Aleksejenko, G.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 .
[CrossRef]

Benker, N.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Bertulis, K.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Bhattacharya, P.

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

Blake, G. A.

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

Böttcher, J.

Brown, E. R.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
[CrossRef]

Cannard, P. J.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Chemla, D. S.

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Chen, T. C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Chen, Y.

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

Chi, C.-C.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Cho, A. Y.

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Cooke, D. G.

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
[CrossRef]

Cunningham, J.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

Cunningham, J. E.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Davies, A. G.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Dietz, R. J. B.

Diez, C. A.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Driscoll, D. C.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Duling, I. N.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Ezdi, K.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 .
[CrossRef] [PubMed]

Freytag, N.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Fuess, H.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Gibis, R.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 61(11), 1347–1349 (1992), http://link.aip.org/link/doi/10.1063/1.107587 .
[CrossRef]

Gossard, A. C.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

Griebel, M.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Grischkowsky, D.

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Halas, N. J.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Halbout, J.-M.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Hanson, M. P.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Hartnagel, H. L.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Hatem, O.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Heiliger, H. M.

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

Heinen, B.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

Hensel, H. J.

Hey, R.

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

Hübers, H. W.

Jackson, A. W.

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

Jacobsen, R. H.

Jepsen, P.

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
[CrossRef]

Jepsen, P. U.

Jördens, C.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

Kadow, C.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

Kash, J. A.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Katzenellenbogen, N.

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

Keiding, S. R.

Ketchen, M. B.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

Kleine-Ostmann, T.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Koch, M.

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
[CrossRef]

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 .
[CrossRef] [PubMed]

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Krotkus, A.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Krumbholz, N.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

Kuhl, J.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Künzel, H.

Kurz, H.

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

Li, G. P.

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

Linfield, E. H.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Lu, H.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Marcinkevicius, S.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

Matsuura, S.

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 .
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-30-7853 .
[CrossRef] [PubMed]

Mattingly, M.

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

McIntosh, K. A.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
[CrossRef]

Melloch, M. R.

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

Mikulics, M.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 .
[CrossRef] [PubMed]

Miller, D. A. B.

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Molis, G.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Moodie, D. G.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Nakashima, S.

Nichols, K. B.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
[CrossRef]

Nuss, M. C.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 .
[CrossRef]

Oh, J.

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

Ospald, F.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Otsuka, N.

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

Pacebutas, V.

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

Ploog, K.

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

Robertson, M. J.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Roehle, H.

Roskos, H. G.

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

Rutz, F.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Sakai, K.

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-30-7853 .
[CrossRef] [PubMed]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 .
[CrossRef]

Sartorius, B.

Schell, M.

Scheller, M.

Schlak, M.

Schwagmann, A.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Sigmund, J.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Sivco, D.

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Smet, J. H.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 .
[CrossRef]

Stanze, D.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005), http://link.aip.org/link/doi/10.1063/1.1901817 .
[CrossRef]

Sydlo, C.

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

Tani, M.

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ao-36-30-7853 .
[CrossRef] [PubMed]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 .
[CrossRef]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005), http://link.aip.org/link/doi/10.1063/1.1901817 .
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

Urmann, G.

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 61(11), 1347–1349 (1992), http://link.aip.org/link/doi/10.1063/1.107587 .
[CrossRef]

Venghaus, H.

Verghese, S.

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
[CrossRef]

Vieweg, N.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 .
[CrossRef] [PubMed]

Von Klitzing, K.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Vosseburger, M.

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

Warren, A. C.

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

Weiner, J. S.

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Wilk, R.

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H. W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16(24), 19695–19705 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-24-19695 .
[CrossRef] [PubMed]

Wood, C. D.

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

Wood, T. H.

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

Woodall, J. M.

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

Zhao, Z.-Y.

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (17)

A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch, and N. Otsuka, “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58(14), 1512–1514 (1991), http://link.aip.org/link/doi/10.1063/1.105162 .
[CrossRef]

H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Application of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69(19), 2903–2905 (1996), http://link.aip.org/link/doi/10.1063/1.117357 .
[CrossRef]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559–561 (1997), http://link.aip.org/link/doi/10.1063/1.118337 .
[CrossRef]

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48(12), 751–753 (1986), http://link.aip.org/link/doi/10.1063/1.96709 .
[CrossRef]

C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76(24), 3510–3512 (2000), http://link.aip.org/link/doi/10.1063/1.126690 .
[CrossRef]

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett. 87(25), 252103 (2005), http://link.aip.org/link/doi/10.1063/1.2149977 .
[CrossRef]

K. Bertulis, A. Krotkus, G. Aleksejenko, V. Pačebutas, R. Adomavičius, G. Molis, and S. Marcinkevičius, “GaBiAs: A material for optoelectronic terahertz devices,” Appl. Phys. Lett. 88(20), 201112 (2006), http://link.aip.org/link/doi/10.1063/1.2205180 .
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005), http://link.aip.org/link/doi/10.1063/1.1861495 .
[CrossRef]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett. 86(16), 163504 (2005), http://link.aip.org/link/doi/10.1063/1.1901817 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007), http://link.aip.org/link/doi/10.1063/1.2712503 .
[CrossRef]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Terahertz wave emission and detection using photoconductive antennas made on low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 91(1), 011102 (2007), http://link.aip.org/link/doi/10.1063/1.2754370 .
[CrossRef]

A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55µm,” Appl. Phys. Lett. 96(14), 141108 (2010), http://link.aip.org/link/doi/10.1063/1.3374401 .
[CrossRef]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010), http://link.aip.org/link/doi/10.1063/1.3427191 .
[CrossRef]

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98(12), 121107 (2011), http://link.aip.org/link/doi/10.1063/1.3571289 .
[CrossRef]

K. A. McIntosh, K. B. Nichols, S. Verghese, and E. R. Brown, “Investigation of ultrashort photocarrier relaxation times in low-temperature-grown GaAs,” Appl. Phys. Lett. 70(3), 354–356 (1997), http://link.aip.org/link/doi/10.1063/1.118412 .
[CrossRef]

J. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, “Room temperature excitons in 1.6µm band-gap GaInAs/AlInAs quantum wells,” Appl. Phys. Lett. 46(7), 619–621 (1985), http://link.aip.org/link/doi/10.1063/1.95504 .
[CrossRef]

H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 61(11), 1347–1349 (1992), http://link.aip.org/link/doi/10.1063/1.107587 .
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24(2), 255–260 (1988), http://dx.doi.org/10.1109/3.121 .
[CrossRef]

J. Electron. Mater. (1)

J. Oh, P. Bhattacharya, Y. Chen, O. Aina, and M. Mattingly, “The dependence of the electrical and optical properties of molecular beam epitaxial In0.52Al0.48As on growth parameters: Interplay of surface kinetics and thermodynamics,” J. Electron. Mater. 19(5), 435–441 (1990), http://www.springerlink.com/content/010544084t85h872/ .
[CrossRef]

J. Eur. Opt. Soc. Rapid. Publ. (1)

K. Ezdi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “A hybrid time-domain model for pulsed terahertz dipole antennas,” J. Eur. Opt. Soc. Rapid. Publ. 4, 09001 (2009), http:/www.jeos.org/index.php/jeos_rp/article/view/09001 .
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

P. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev. 5(1), 124–166 (2011), http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000011/abstract .
[CrossRef]

Nat. Mater. (1)

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003), doi:.
[CrossRef] [PubMed]

Opt. Express (3)

Other (2)

H. Hoenow, H.-G. Bach, J. Böttcher, F. Gueissaz, H. Künzel, F. Scheffer, and C. Schramm, “Deep level Analysis of Si Doped MBE Grown AlInAs Layers, ” Proc. 4th Int. Conf. InP and Rel. Mater., 136–139 (1992), http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00235658 .

R. Wilk, M. Mikulics, K. Biermann, H. Künzel, I. Z. Kozma, R. Holzwarth, B. Sartorius, M. Mei, and M. Koch, “THz Time-Domain Spectrometer Based on LT-InGaAs Photoconductive Antennas Exited by a 1.55 μm Fibre Laser, ” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThR2, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4452856&isnumber=4452320 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of InGaAs/InAlAs heterostructure, with 100 periods of a 12 nm InGaAs layer followed by a 8 nm InAlAs layer with cluster-induced defects acting as electron traps. 1(b) Schematic of the respective band-diagram in real space with deep cluster-induced defect states.

Fig. 2
Fig. 2

THz pulse trace and corresponding FFT spectrum for a conventional LT-grown Be-doped MLHS THz emitter grown at Ts = 130 °C (this is serves as a reference).

Fig. 3
Fig. 3

THz pulse trace and corresponding FFT Spectrum for a MLHS grown at Ts = 400°C, with separated trapping and photoconductive regions.

Fig. 4
Fig. 4

THz pulse trace and corresponding FFT spectrum for the LT-grown Be-doped MLHS reference emitter grown at Ts = 130 °C and a Ts = 400° C grown receiver with a Dipol antenna.

Fig. 5
Fig. 5

Emitted THz-pulse amplitude detected by a PCA receiver in a THz TDS setup, as a function of applied bias field at the emitter for a MLHS grown at Ts = 400 °C (squares) and a MLHS grown at Ts = 130 °C, Be-doped (triangles). The applied optical power was 10 mW for both emitter and receiver.

Fig. 6
Fig. 6

Emitted THz-pulse amplitude detected by a PCA receiver in a THz TDS setup, as a function of optical excitation power at the emitter for a MLHS grown at Ts = 400 °C (squares) and a MLHS grown at Ts = 130 °C, Be-doped (triangles). The applied emitter bias field was 2 kV/cm.

Metrics