Abstract

A facile approach of fabricating hollow cylindrical inverse opals and inverse opal columns by sol-gel co-assembly method was proposed. Polystyrene (PS) colloidal suspension added with hydrolyzed silicate precursor solution was used to self-assemble composite colloidal crystals which consist of PS colloidal crystal template and infiltrated silica gel in the interstitial of microspheres. Continuous hollow cylindrical composite colloidal crystal films have been produced on capillaries’ outside and internal surface. Composite colloidal crystal columns which filling up the interior of a capillary were fabricated by pressure assisted sol-gel co-assembly method. Hollow cylindrical inverse opals and inverse opal columns were obtained after removing PS colloidal crystal from the composite colloidal crystal. Optical properties of the silica hollow cylindrical inverse opals were characterized by transmission spectrum and a stop band was observed. Structure and optical properties of the inverse opal columns were investigated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Li, P. R. Heman, C. E. Valdivia, V. Kitaev, and G. Ozin, “Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber,” Opt. Express 13(17), 6454–6459 (2005.
    [CrossRef] [PubMed]
  2. J. H. Moon, G.-R. Yi, and S.-M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas,” J. Colloid Interface Sci. 287(1), 173–177 (2005).
    [CrossRef] [PubMed]
  3. Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
    [CrossRef]
  4. Y. Lin, P. R. Herman, and W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” J. Appl. Phys. 102(7), 073106 (2007).
    [CrossRef]
  5. B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
    [CrossRef] [PubMed]
  6. Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
    [CrossRef]
  7. L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
    [CrossRef]
  8. X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
    [CrossRef]
  9. B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
    [CrossRef] [PubMed]
  10. Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
    [CrossRef]
  11. S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
    [CrossRef]
  12. U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
    [CrossRef]
  13. H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
    [CrossRef]

2011 (1)

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

2010 (1)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

2007 (1)

Y. Lin, P. R. Herman, and W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” J. Appl. Phys. 102(7), 073106 (2007).
[CrossRef]

2006 (1)

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

2005 (4)

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

J. Li, P. R. Heman, C. E. Valdivia, V. Kitaev, and G. Ozin, “Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber,” Opt. Express 13(17), 6454–6459 (2005.
[CrossRef] [PubMed]

J. H. Moon, G.-R. Yi, and S.-M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas,” J. Colloid Interface Sci. 287(1), 173–177 (2005).
[CrossRef] [PubMed]

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

2003 (2)

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

2002 (1)

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

2000 (1)

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
[CrossRef]

1998 (1)

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[CrossRef] [PubMed]

Aizenberg, J.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Bao, X. Y.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Blanford, C. F.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[CrossRef] [PubMed]

Chen, Z.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Davis, S.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Gao, F.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Gates, B.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
[CrossRef]

Guo, W.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Hao, L.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Hatton, B.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Heim, M.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Heman, P. R.

Herman, P. R.

Y. Lin, P. R. Herman, and W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” J. Appl. Phys. 102(7), 073106 (2007).
[CrossRef]

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

Holland, B. T.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[CrossRef] [PubMed]

Hu, Y.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Ito, K.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Iwayama, Y.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Jiang, W.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Kamp, U.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

Kitaev, V.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

J. Li, P. R. Heman, C. E. Valdivia, V. Kitaev, and G. Ozin, “Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber,” Opt. Express 13(17), 6454–6459 (2005.
[CrossRef] [PubMed]

Kuhn, A.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Li, J.

J. Li, P. R. Heman, C. E. Valdivia, V. Kitaev, and G. Ozin, “Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber,” Opt. Express 13(17), 6454–6459 (2005.
[CrossRef] [PubMed]

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

li, X.

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

Lin, Y.

Y. Lin, P. R. Herman, and W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” J. Appl. Phys. 102(7), 073106 (2007).
[CrossRef]

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

Liu, X.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Lu, Y.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
[CrossRef]

Lv, L.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Mabury, S. A.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

Maeda, H.

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

Mano, N.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Mishchenko, L.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Miyazaki, M.

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

Mo, X.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Moon, J. H.

J. H. Moon, G.-R. Yi, and S.-M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas,” J. Colloid Interface Sci. 287(1), 173–177 (2005).
[CrossRef] [PubMed]

Nakamura, H.

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

Ozin, G.

Ozin, G. A.

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

Ravaine, S.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Reculusa, S.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Sandhage, K. H.

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Sawada, T.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Shinohara, T.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Stein, A.

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[CrossRef] [PubMed]

Su, F.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Takasaka, M.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Takiguchi, Y.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Valdivia, C. E.

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

J. Li, P. R. Heman, C. E. Valdivia, V. Kitaev, and G. Ozin, “Colloidal photonic crystal cladded optical fibers: Towards a new type of photonic band gap fiber,” Opt. Express 13(17), 6454–6459 (2005.
[CrossRef] [PubMed]

von?Freymann, G.

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

Wang, H.

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

Xia, Y.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
[CrossRef]

Xu, W.

Y. Lin, P. R. Herman, and W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” J. Appl. Phys. 102(7), 073106 (2007).
[CrossRef]

Yamanaka, J.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Yan, Q.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Yang, S.-M.

J. H. Moon, G.-R. Yi, and S.-M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas,” J. Colloid Interface Sci. 287(1), 173–177 (2005).
[CrossRef] [PubMed]

Yi, G.-R.

J. H. Moon, G.-R. Yi, and S.-M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas,” J. Colloid Interface Sci. 287(1), 173–177 (2005).
[CrossRef] [PubMed]

Yin, Y.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
[CrossRef]

Yonese, M.

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

You, M.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Zhao, X. S.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Zhou, Y.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Zhou, Z.

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Zhu, Y.

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Adv. Funct. Mater. (1)

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater. 21(4), 691–698 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (3)

U. Kamp, V. Kitaev, G. von Freymann, G. A. Ozin, and S. A. Mabury, “Colloidal crystal capillary columns—towards optical chromatography,” Adv. Mater. (Deerfield Beach Fla.) 17(4), 438–443 (2005).
[CrossRef]

H. Wang, X. li, H. Nakamura, M. Miyazaki, and H. Maeda, “Continuous particle self-arrangement in a long microcapillary,” Adv. Mater. (Deerfield Beach Fla.) 14(22), 1662–1666 (2002).
[CrossRef]

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. (Deerfield Beach Fla.) 12(10), 693–713 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Lin, P. R. Herman, C. E. Valdivia, J. Li, V. Kitaev, and G. A. Ozin, “Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber,” Appl. Phys. Lett. 86(12), 121106 (2005).
[CrossRef]

J. Appl. Phys. (1)

Y. Lin, P. R. Herman, and W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction,” J. Appl. Phys. 102(7), 073106 (2007).
[CrossRef]

J. Colloid Interface Sci. (1)

J. H. Moon, G.-R. Yi, and S.-M. Yang, “Fabrication of hollow colloidal crystal cylinders and their inverted polymeric replicas,” J. Colloid Interface Sci. 287(1), 173–177 (2005).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

X. S. Zhao, F. Su, Q. Yan, W. Guo, X. Y. Bao, L. Lv, and Z. Zhou, “Templating methods for preparation of porous structures,” J. Mater. Chem. 16(7), 637–648 (2006).
[CrossRef]

Langmuir (1)

Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, T. Sawada, and M. Yonese, “Optically tunable gelled photonic crystal covering almost the entire visible light wavelength region,” Langmuir 19(4), 977–980 (2003).
[CrossRef]

Mater. Res. Bull. (1)

L. Hao, M. You, X. Mo, W. Jiang, Y. Zhu, Y. Zhou, Y. Hu, X. Liu, and Z. Chen, “Fabrication and characterization of ordered macroporous semiconductors CdS by colloidal crystal template,” Mater. Res. Bull. 38(4), 723–729 (2003).
[CrossRef]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, and J. Aizenberg, “Assembly of large-area, highly ordered, crack-free inverse opal films,” Proc. Natl. Acad. Sci. U.S.A. 107(23), 10354–10359 (2010).
[CrossRef] [PubMed]

Science (1)

B. T. Holland, C. F. Blanford, and A. Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science 281(5376), 538–540 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Part (A) is a schematic diagram of composite colloidal crystal growth on a capillary internal wall with sol-gel co-assembly method [9]. Part (B) is a schematic diagram which shows the process of fabricating silica HCIO on the internal wall of a capillary: (a)–(c) are cross section view, (d) is longitudinal section view of the capillary internal wall coated with inverse opals.

Fig. 2
Fig. 2

Part (A) is a schematic diagram showing the cross section, longitudinal section of composite colloidal crystal and inverse opal on capillaries’ outer wall. Part (B) is a schematic diagram showing the cross section and front view of composite colloidal crystal column and inverse opal column fabricated in a capillary.

Fig. 3
Fig. 3

SEM images of glass capillaries in 670μm diameter coated with silica inverse opals co-assembled from 580nm PS spheres. (a) and (b) images of the capillary coated with silica inverse opals with increased magnification, (c) {111} plane of the inverse opal, (d) {100} plane of the inverse opal, (e) and (f) cross section of the silica inverse opal films of ~50 layers on the capillary surface.

Fig. 4
Fig. 4

(a)–(c) are optical microscope images of capillaries in 350μm internal diameter. (a) bare capillary, (b) internal wall coated with composite colloidal crystal, (c) internal wall preserved with silica inverse opals after sintering. (d)–(i) are SEM images of inverse opals on the internal wall of a capillary, (d) longitudinal section of the capillary whose internal wall was coated with silica inverse opals, (e) longitudinal cross section of inverse opals, (f)surface of the inverse opals on the internal curved wall, (g) high magnification of the surface in (f), (h) and (i) are cross section of a capillary with silica inverse opals on its internal wall.

Fig. 5
Fig. 5

Optical properties of silica HCIOs. (a) transmission spectra of silica HCIOs: (A) transmission spectrum of HCIOs on internal surface of a capillary in 670μm diameter made from 490nm PS microspheres, (B) and (C) transmission spectra of HCIOs on outer surface of capillaries in 850μm diameter made from 690nm and 580nm PS microspheres: (B) 580nm, (C) 690nm. Inset on right bottom corner is a graph of PS microsphere diameter to measured photonic stop band centre. (b) and (c) are optical properties of a silica HCIO made from 490nm PS microspheres on a capillary’s internal surface in 300μm diameter. (b) transmission gap centre wavelength dependence on axial translation. (c) maximum transmission gap centre wavelength difference of measurements in three times along different radial directions dependence on axial translation.

Fig. 6
Fig. 6

(a) and (b) are optical images of a silica IOC co-assembled from 390nm PS microspheres with colors, (a) top cross section view, (b) side view. (c)–(j) are SEM images of the silica IOC co-assembled inside capillaries. (b) top view of the IOC embedded in a capillary, inset shows its top surface, (d) the outer cylindrical surface of IOC, (e) longitudinal cross section of the IOC and the top cross section surface, (f) and (g) top view of the longitudinal cross section of a silica IOC, insets in (f) and (g) with increased magnification show the details, (h) is edge of the internal cross section, (i) and (j) interior of the internal cross section at different magnification. Inset in (i) shows {100} plane and inset in (j) is {111} plane.

Fig. 7
Fig. 7

Optical properties of silica IOC in 500μm diameter co-assembled from 390nm PS microspheres. (a) reflection spectrum along its axis direction. (b) reflection spectra along different radial directions. (c) reflection peak wavelength dependence on axial translation. (d) maximum reflection peak wavelength difference of measurements in three times around the axis dependence on axial translation.

Metrics