Abstract

This work presents a novel method to introduce a sustainable biaxial tensile strain larger than 1% in a thin Ge membrane using a stressor layer integrated on a Si substrate. Raman spectroscopy confirms 1.13% strain and photoluminescence shows a direct band gap reduction of 100meV with enhanced light emission efficiency. Simulation results predict that a combination of 1.1% strain and heavy n+ doping reduces the required injected carrier density for population inversion by over a factor of 60. We also present the first highly strained Ge photodetector, showing an excellent responsivity well beyond 1.6um.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
    [CrossRef]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  3. D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
    [CrossRef]
  4. T. Krishnamohan, D. Kim, T. V. Dinh, A. T. Pham, B. Meinerzhagen, C. Jungemann, and K. C. Saraswat, “Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage”, IEEE. IEDM. Tech. Digest., 899–892 (2008).
  5. T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
    [CrossRef]
  6. R. A. Soref and L. Friedman, “Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct. 14(2–3), 189 (1993).
    [CrossRef]
  7. M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234 (1996).
    [CrossRef]
  8. M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
    [CrossRef]
  9. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
    [CrossRef] [PubMed]
  10. S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
    [CrossRef] [PubMed]
  11. P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
    [CrossRef] [PubMed]
  12. M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
    [CrossRef]
  13. C. Boztug, F. Chen, J. Sanchez-Perez, F. Sudradjat, D. Paskiewicz, R.B. Jacobson, M. Lagally, and R. Paiella, “Direct-bandgap germanium active layers pumped above transparency based on tensiley strained nanomembranes,” CLEO:2011, PDPA2 (2011).
  14. Y. Huo, H. Lin, Y. Rong, M. Makarova, M. Li, R. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Efficient luminescence in highly tensile-strained germanium”, IEEE Int. Conf. on Group IV Photonics, 265–267 (2009).
  15. L. Nataraj, F. Xu, and S. G. Cloutier, “Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals,” Opt. Express 18(7), 7085–7091 (2010).
    [CrossRef] [PubMed]
  16. J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics”, ArXiv preprint 1105.0044 (2011).
  17. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [CrossRef]
  18. Y. Huo, R. Chen, H. Lin, T. I. Kamins, and J. S. Harris, “MBE growth of high Sn-percentage GeSn alloys with a composition-dependent absorption-edge shift,” 7th Int. Conf. on Group IV Photonics Beijing, China (2010).
  19. E. Kasper, M. Oehme, T. Aguirov, J. Werner, M. Kittler, and J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes”, 7th Int. Conf. on Group IV Photonics Beijing, China (2010).
  20. T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007).
    [CrossRef]
  21. T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
    [CrossRef]
  22. A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
    [CrossRef]
  23. Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
    [CrossRef]
  24. J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997).
    [CrossRef]
  25. D. W. Hoffman and J. A. Thornton, “The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures,” Thin Solid Films 45(2), 387–396 (1977).
    [CrossRef]
  26. Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
    [CrossRef]
  27. J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011).
    [CrossRef]
  28. G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
    [CrossRef]
  29. Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
    [CrossRef]
  30. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010).
    [CrossRef] [PubMed]

2011

J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011).
[CrossRef]

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

2010

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010).
[CrossRef] [PubMed]

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

L. Nataraj, F. Xu, and S. G. Cloutier, “Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals,” Opt. Express 18(7), 7085–7091 (2010).
[CrossRef] [PubMed]

2009

2008

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

2007

T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007).
[CrossRef]

K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
[CrossRef]

2005

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
[CrossRef]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

2003

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

2002

T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
[CrossRef]

2000

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

1997

J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997).
[CrossRef]

1996

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234 (1996).
[CrossRef]

1993

R. A. Soref and L. Friedman, “Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct. 14(2–3), 189 (1993).
[CrossRef]

1977

D. W. Hoffman and J. A. Thornton, “The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures,” Thin Solid Films 45(2), 387–396 (1977).
[CrossRef]

Adams, B.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

Ainspan, H. A.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Bai, Y.

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

Bedell, S. W.

J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011).
[CrossRef]

Bertin, H.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

Bosseboeuf, A.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

Boucaud, P.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
[CrossRef]

Bowen, R. C.

T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
[CrossRef]

Boykin, T. B.

T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007).
[CrossRef]

T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
[CrossRef]

Burkhard, G. F.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010).
[CrossRef] [PubMed]

Cannon, D. D.

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Chen, C.-Y.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Chen, R.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Cheng, C.

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

Cheng, S. L.

Cheng, T.-H.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Cho, H.

K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
[CrossRef]

Choi, W. K.

J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997).
[CrossRef]

Chong, C. W.

J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997).
[CrossRef]

Chopra, S.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

Chui, C. O.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
[CrossRef]

Cloutier, S. G.

de Kersauson, M.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

El Kurdi, M.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
[CrossRef]

Fischetti, M. V.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234 (1996).
[CrossRef]

Fishman, G.

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
[CrossRef]

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

Fitzgerald, E. A.

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

Friedman, D. J.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Friedman, L.

R. A. Soref and L. Friedman, “Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct. 14(2–3), 189 (1993).
[CrossRef]

Harris, J. S.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Hoffman, D. W.

D. W. Hoffman and J. A. Thornton, “The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures,” Thin Solid Films 45(2), 387–396 (1977).
[CrossRef]

Hoke, E. T.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010).
[CrossRef] [PubMed]

Huo, Y.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Ishikawa, Y.

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Kamins, T. I.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Kapur, P.

K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
[CrossRef]

Kharche, N.

T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007).
[CrossRef]

Kim, J.

J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011).
[CrossRef]

Kim, Y.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

Kimerling, L. C.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Klimeck, G.

T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007).
[CrossRef]

T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
[CrossRef]

Ko, C.-Y.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Koo, K.

K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
[CrossRef]

Kwark, Y. H.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Lan, H.-S.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Laux, S. E.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234 (1996).
[CrossRef]

Lee, K. E.

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

Lee, M. L.

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

Li, M.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Lim, P. H.

Lin, H.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Liu, C. W.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Liu, J.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Lu, J.

Luan, H.-C.

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Makarova, M.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Martincic, E.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

McGehee, M. D.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010).
[CrossRef] [PubMed]

Meghelli, M.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Michel, J.

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Moffatt, S.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

Nataraj, L.

Nayfeh, A.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
[CrossRef]

Nishi, Y.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Oyafuso, F.

T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
[CrossRef]

Park, S.

Parker, B. D.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Peng, K.-L.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Ritter, M. B.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Rong, Y.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

Rylyakov, A. V.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Sadana, D. K.

J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011).
[CrossRef]

Saraswat, K.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Saraswat, K. C.

K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
[CrossRef]

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
[CrossRef]

Sauvage, S.

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
[CrossRef]

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

Shambat, G.

Shan, L.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

Soref, R. A.

R. A. Soref and L. Friedman, “Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct. 14(2–3), 189 (1993).
[CrossRef]

Sorna, M.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Soyuer, M.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Sun, X.

Thareja, G.

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

Thong, J. T. L.

J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997).
[CrossRef]

Thornton, J. A.

D. W. Hoffman and J. A. Thornton, “The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures,” Thin Solid Films 45(2), 387–396 (1977).
[CrossRef]

Tseng, H.-H.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Vuckovic, J.

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

S. L. Cheng, J. Lu, G. Shambat, H. Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[CrossRef] [PubMed]

Wada, K.

P. H. Lim, S. Park, Y. Ishikawa, and K. Wada, “Enhanced direct bandgap emission in germanium by micromechanical strain engineering,” Opt. Express 17(18), 16358–16365 (2009).
[CrossRef] [PubMed]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Wu, Y.-R.

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

Xu, F.

Yang, J.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Yonehara, T.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
[CrossRef]

Yu, H. Y.

Zier, S. J.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3293–3297 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. El Kurdi, H. Bertin, E. Martincic, M. de Kersauson, G. Fishman, S. Sauvage, A. Bosseboeuf, and P. Boucaud, “Control of direct band gap emission of bulk germanium by mechanical tensile strain,” Appl. Phys. Lett. 96(4), 041909 (2010).
[CrossRef]

J. Kim, S. W. Bedell, and D. K. Sadana, “Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,” Appl. Phys. Lett. 98(8), 082112 (2011).
[CrossRef]

Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(1), 011111 (2011).
[CrossRef]

T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu, and H.-H. Tseng, “Strain-enhanced photoluminescence from Ge direct transition,” Appl. Phys. Lett. 96(21), 211108 (2010).
[CrossRef]

IBM J. Res. Develop.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47(2), 259–282 (2003).
[CrossRef]

IEEE Electron Device Lett.

A. Nayfeh, C. O. Chui, T. Yonehara, and K. C. Saraswat, “Fabrication of high-quality p-MOSFET in Ge grown heteroepitaxially on Si,” IEEE Electron Device Lett. 26(5), 311–313 (2005).
[CrossRef]

G. Thareja, S. Chopra, B. Adams, Y. Kim, S. Moffatt, K. Saraswat, and Y. Nishi, “High n-type antimony dopant activation in germanium using laser annealing for n+/p junction diode,” IEEE Electron Device Lett. 32(7), 838–840 (2011).
[CrossRef]

IEEE Trans. Electron. Dev.

K. Koo, H. Cho, P. Kapur, and K. C. Saraswat, “Performance comparisons between carbon nanotubes, optical, and Cu for future high-performance on-chip interconnect applications,” IEEE Trans. Electron. Dev. 54(12), 3206–3215 (2007).
[CrossRef]

J. Appl. Phys.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234 (1996).
[CrossRef]

M. El Kurdi, G. Fishman, S. Sauvage, and P. Boucaud, “Band structure and optical gain of tensile-strained germanium based 30 band k·p formalism,” J. Appl. Phys. 107, 013710 (2010).
[CrossRef]

Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, and L. C. Kimerling, “Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate,” J. Appl. Phys. 98(1), 013501 (2005).
[CrossRef]

Y. Bai, K. E. Lee, C. Cheng, M. L. Lee, and E. A. Fitzgerald, “Growth of highly tensile-strained Ge on relaxed InxGa1-xAs by metal-organic chemical vapor deposition,” J. Appl. Phys. 104(8), 084518 (2008).
[CrossRef]

Nat. Photonics

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. B. Boykin, N. Kharche, and G. Klimeck, “Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization,” Phys. Rev. B 76(3), 035310 (2007).
[CrossRef]

T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory,” Phys. Rev. B 66(12), 125207 (2002).
[CrossRef]

Proc. IEEE

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Sens. Actuators A Phys.

J. T. L. Thong, W. K. Choi, and C. W. Chong, “TMAH etching of silicon and the interaction of etching parameters,” Sens. Actuators A Phys. 63(3), 243–249 (1997).
[CrossRef]

Superlattices Microstruct.

R. A. Soref and L. Friedman, “Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct. 14(2–3), 189 (1993).
[CrossRef]

Thin Solid Films

D. W. Hoffman and J. A. Thornton, “The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures,” Thin Solid Films 45(2), 387–396 (1977).
[CrossRef]

Other

Y. Huo, R. Chen, H. Lin, T. I. Kamins, and J. S. Harris, “MBE growth of high Sn-percentage GeSn alloys with a composition-dependent absorption-edge shift,” 7th Int. Conf. on Group IV Photonics Beijing, China (2010).

E. Kasper, M. Oehme, T. Aguirov, J. Werner, M. Kittler, and J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes”, 7th Int. Conf. on Group IV Photonics Beijing, China (2010).

J. R. Jain, D.-S. Ly-Gagnon, K. C. Balram, J. S. White, M. L. Brongersma, D. A. B. Miller, and R. T. Howe, “Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics”, ArXiv preprint 1105.0044 (2011).

T. Krishnamohan, D. Kim, T. V. Dinh, A. T. Pham, B. Meinerzhagen, C. Jungemann, and K. C. Saraswat, “Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage”, IEEE. IEDM. Tech. Digest., 899–892 (2008).

C. Boztug, F. Chen, J. Sanchez-Perez, F. Sudradjat, D. Paskiewicz, R.B. Jacobson, M. Lagally, and R. Paiella, “Direct-bandgap germanium active layers pumped above transparency based on tensiley strained nanomembranes,” CLEO:2011, PDPA2 (2011).

Y. Huo, H. Lin, Y. Rong, M. Makarova, M. Li, R. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “Efficient luminescence in highly tensile-strained germanium”, IEEE Int. Conf. on Group IV Photonics, 265–267 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fabrication process flow for highly strained Ge membrane (b) SEM picture of deflected membranes

Fig. 2
Fig. 2

(a) Normalized Raman spectra (b) Room temperature direct band gap PL spectra. The inset of the figure(b) shows how the percentage of electrons in the Γ valley increases with strain according to our simulations.

Fig. 3
Fig. 3

Required injection carrier density for population inversion versus strain for different n-type doping concentration.

Fig. 4
Fig. 4

(a) Schematic diagram of strained Ge PN photodetector (b) Optical image of a strained PD showing a deflected active region

Fig. 5
Fig. 5

Normalized photocurrents from strained PDs showing the extended responsivity beyond 1.6um due to the bandgap reduction. Inset shows the calculated Fabry-Perot enhancement factors in a 1.65um Ge membrane, assuming a complex refractive index of n = 4.35, k = 0.01.

Metrics