Abstract

A comparative study is made of the laser crystals 50 at. % Er:YAG and 50 at. % Er:YSGG. Both lasers are constructed in the bounce geometry with quasi continuous wave (QCW) diode pumping. In Er:YAG, pulse energies of up to ~31mJ, slope efficiency of 12.6% and a red-shift in laser wavelength are observed with a final and dominant wavelength of 2.936μm. In Er:YSGG, higher performance is achieved with pulse energies of ~55mJ, slope efficiency of 20.5% and a single transition wavelength of 2.797μm observed. The study indicates that diode pumped Er:YSGG is a superior laser source at 3μm than Er:YAG and it has greater energy storage potential for Q-switched operation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Dinerman and P. F. Moulton, “3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
    [PubMed]
  2. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
    [CrossRef] [PubMed]
  3. H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).
  4. K. L. Vodopyanov and C. C. Phillips, “Mid-IR nonlinear spectroscopy of low-dimensional semiconductor structures using an OPG,” Proc. SPIE 2801, 11–18 (1996).
    [CrossRef]
  5. S. A. Pollack and D. B. Chang, “Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals,” Opt. Quantum Electron. 22(S1), S75–S93 (1990).
    [CrossRef]
  6. S. Georgescu, “Mathematical modeling of 3-μm erbium lasers,” in Proceedings of The First French-Romanian Colloquium of Numerical Physics (Geometry Balkan Press, 2000), pp. 71–103.
  7. M. Tikerpae, S. D. Jackson, and T. A. King, “Theoretical comparison of Er3+-doped crystal lasers,” J. Mod. Opt. 45(6), 1269–1284 (1998).
  8. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: a Handbook (Wiley, 1997).
  9. J. Meister, R. Franzen, C. Apel, and N. Gutknecht, “Multireflection pumping concept for miniaturized diode-pumped solid-state lasers,” Appl. Opt. 43(31), 5864–5869 (2004).
    [CrossRef] [PubMed]
  10. C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, and W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 294-µm Er:YAG oscillator,” Opt. Lett. 19(20), 1627–1629 (1994).
    [CrossRef] [PubMed]
  11. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, and W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-µm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [CrossRef] [PubMed]
  12. J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79μm,” Laser Phys. 18(10), 1124–1127 (2008).
    [CrossRef]
  13. R. Waarts, D. Nam, S. Sanders, J. Harrison, and B. J. Dinerman, “Two-dimensional Er:YSGG microlaser array pumped with a monolithic two-dimensional laser diode array,” Opt. Lett. 19(21), 1738–1740 (1994).
    [CrossRef] [PubMed]
  14. P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
    [CrossRef]

2008 (1)

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79μm,” Laser Phys. 18(10), 1124–1127 (2008).
[CrossRef]

2004 (2)

2001 (1)

1998 (2)

M. Tikerpae, S. D. Jackson, and T. A. King, “Theoretical comparison of Er3+-doped crystal lasers,” J. Mod. Opt. 45(6), 1269–1284 (1998).

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

1996 (1)

K. L. Vodopyanov and C. C. Phillips, “Mid-IR nonlinear spectroscopy of low-dimensional semiconductor structures using an OPG,” Proc. SPIE 2801, 11–18 (1996).
[CrossRef]

1994 (3)

1990 (1)

S. A. Pollack and D. B. Chang, “Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals,” Opt. Quantum Electron. 22(S1), S75–S93 (1990).
[CrossRef]

1988 (1)

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[CrossRef]

Apel, C.

Beach, R. J.

Chang, D. B.

S. A. Pollack and D. B. Chang, “Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals,” Opt. Quantum Electron. 22(S1), S75–S93 (1990).
[CrossRef]

Dinerman, B. J.

Dostálová, T.

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

Ernst, H.

Ertmer, W.

Franzen, R.

Furu, L. H.

Gutknecht, N.

Hamal, K.

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

Hamilton, C. E.

Harrison, J.

Jackson, S. D.

M. Tikerpae, S. D. Jackson, and T. A. King, “Theoretical comparison of Er3+-doped crystal lasers,” J. Mod. Opt. 45(6), 1269–1284 (1998).

Jelinkova, H.

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

King, T. A.

M. Tikerpae, S. D. Jackson, and T. A. King, “Theoretical comparison of Er3+-doped crystal lasers,” J. Mod. Opt. 45(6), 1269–1284 (1998).

Krejsa, O.

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

Krupke, W. F.

Kubelka, J.

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

Liu, J. J.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79μm,” Laser Phys. 18(10), 1124–1127 (2008).
[CrossRef]

Liu, J. S.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79μm,” Laser Phys. 18(10), 1124–1127 (2008).
[CrossRef]

Lubatschowski, H.

Manni, J. G.

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[CrossRef]

Meister, J.

Moulton, P. F.

B. J. Dinerman and P. F. Moulton, “3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
[PubMed]

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[CrossRef]

Nam, D.

Nyga, P.

Phillips, C. C.

K. L. Vodopyanov and C. C. Phillips, “Mid-IR nonlinear spectroscopy of low-dimensional semiconductor structures using an OPG,” Proc. SPIE 2801, 11–18 (1996).
[CrossRef]

Pollack, S. A.

S. A. Pollack and D. B. Chang, “Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals,” Opt. Quantum Electron. 22(S1), S75–S93 (1990).
[CrossRef]

Procházka, S.

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

Rines, G. A.

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[CrossRef]

Sanders, S.

Skorczakowski, M.

Sutton, S. B.

Swiderski, J.

Tang, Y.

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79μm,” Laser Phys. 18(10), 1124–1127 (2008).
[CrossRef]

Tikerpae, M.

M. Tikerpae, S. D. Jackson, and T. A. King, “Theoretical comparison of Er3+-doped crystal lasers,” J. Mod. Opt. 45(6), 1269–1284 (1998).

Vodopyanov, K. L.

K. L. Vodopyanov and C. C. Phillips, “Mid-IR nonlinear spectroscopy of low-dimensional semiconductor structures using an OPG,” Proc. SPIE 2801, 11–18 (1996).
[CrossRef]

Waarts, R.

Welling, H.

Will, G. F.

Zajac, A.

Ziolek, C.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

P. F. Moulton, J. G. Manni, and G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24(6), 960–973 (1988).
[CrossRef]

J. Mod. Opt. (1)

M. Tikerpae, S. D. Jackson, and T. A. King, “Theoretical comparison of Er3+-doped crystal lasers,” J. Mod. Opt. 45(6), 1269–1284 (1998).

Laser Phys. (2)

J. S. Liu, J. J. Liu, and Y. Tang, “Performance of a diode end-pumped Cr,Er:YSGG laser at 2.79μm,” Laser Phys. 18(10), 1124–1127 (2008).
[CrossRef]

H. Jelinkova, T. Dostálová, K. Hamal, O. Krejsa, J. Kubelka, and S. Procházka, “Er:YAG laser in dentistry,” Laser Phys. 8, 176–181 (1998).

Opt. Express (1)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

S. A. Pollack and D. B. Chang, “Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals,” Opt. Quantum Electron. 22(S1), S75–S93 (1990).
[CrossRef]

Proc. SPIE (1)

K. L. Vodopyanov and C. C. Phillips, “Mid-IR nonlinear spectroscopy of low-dimensional semiconductor structures using an OPG,” Proc. SPIE 2801, 11–18 (1996).
[CrossRef]

Other (2)

S. Georgescu, “Mathematical modeling of 3-μm erbium lasers,” in Proceedings of The First French-Romanian Colloquium of Numerical Physics (Geometry Balkan Press, 2000), pp. 71–103.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: a Handbook (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy level diagram for the trivalent erbium ion.

Fig. 2
Fig. 2

Experimental setup of diode pumped 50 at. % Er:YAG/Er:YSGG bounce geometry laser.

Fig. 3
Fig. 3

Output pulse energy from diode pumped 50 at. % Er:YAG laser with pump pulse duration and frequency of 1.15ms and 14Hz respectively.

Fig. 4
Fig. 4

Temporal traces of the Er:YAG laser wavelengths taken using 1% output coupling at a pump energy of 177mJ.

Fig. 5
Fig. 5

Output pulse energy from diode pumped 50 at. % Er:YSGG laser with pump pulse duration and frequency of 14Hz and 1.15ms respectively.

Tables (3)

Tables Icon

Table 1 Some important thermal, mechanical and spectroscopic properties of Er:YSGG and Er:YAG

Tables Icon

Table 2 Boltzmann coefficients for the Stark levels involved in theEr:YAG and Er:YSGG transitions

Tables Icon

Table 3 Threshold data for Er:YAG and Er:YSGG and relative cross-sections compared to the 2.936um transition

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ij α i E th =constant

Metrics