Abstract

The emissive properties of proton implanted fused silica surfaces have been studied by laser beam annealing. When submitted to a high thermal step from a focused CO2 laser, an intense near infra-red transient incandescence (TI) peak rises from stressed silica. The TI presents the characteristics of a thermoluminescent (TL) emission that occurs above a thermal rate threshold. We show that TI rises at the stress relaxation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
    [CrossRef]
  2. S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
    [CrossRef]
  3. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [CrossRef]
  4. P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
    [CrossRef]
  5. E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45(1), 167–174 (1974).
    [CrossRef]
  6. J. L. Lawless and D. Lo, “Thermoluminescence for nonlinear heating profiles with application to laser heated emissions,” J. Appl. Phys. 89(11), 6145–6152 (2001).
    [CrossRef]
  7. J. L. Lawless, S. K. Lam, and D. Lo, “Nondestructive in situ thermoluminescence using CO(2) laser heating,” Opt. Express 10(6), 291–296 (2002).
    [PubMed]
  8. Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
    [CrossRef]
  9. J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys. 53(7), 5200–5209 (1982).
    [CrossRef]
  10. The 1000K temperature bound is obtained by the downscaling of the temperature determined in [4] for a larger beam waist and lower power.
  11. W. Primak, “Stress relaxation of vitreous silica on irradiation,” J. Appl. Phys. 53(11), 7331–7342 (1982).
    [CrossRef]
  12. C. A. Volkert and A. Polman, “Radiation-enhanced plastic flow of covalent materials during ion irradiation,” Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).
    [CrossRef]
  13. E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett. 65(19), 2487–2489 (1994).
    [CrossRef]
  14. A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys. 115(7), 3336–3341 (2001).
    [CrossRef]
  15. L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
    [CrossRef]
  16. M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
    [CrossRef]
  17. A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
    [CrossRef]
  18. M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
    [CrossRef] [PubMed]
  19. C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
    [CrossRef]
  20. C. A. Volkert, “Stress and plastic flow in silicon during amorphization by ion bombardment,” J. Appl. Phys. 70(7), 3521–3527 (1991).
    [CrossRef]
  21. S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5–6), 625–661 (1997).
    [CrossRef]

2006 (2)

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
[CrossRef]

2005 (1)

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[CrossRef]

2003 (1)

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

2002 (1)

2001 (2)

J. L. Lawless and D. Lo, “Thermoluminescence for nonlinear heating profiles with application to laser heated emissions,” J. Appl. Phys. 89(11), 6145–6152 (2001).
[CrossRef]

A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys. 115(7), 3336–3341 (2001).
[CrossRef]

2000 (1)

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

1997 (1)

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5–6), 625–661 (1997).
[CrossRef]

1994 (1)

E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett. 65(19), 2487–2489 (1994).
[CrossRef]

1992 (1)

C. A. Volkert and A. Polman, “Radiation-enhanced plastic flow of covalent materials during ion irradiation,” Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).
[CrossRef]

1991 (1)

C. A. Volkert, “Stress and plastic flow in silicon during amorphization by ion bombardment,” J. Appl. Phys. 70(7), 3521–3527 (1991).
[CrossRef]

1990 (1)

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

1982 (2)

J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys. 53(7), 5200–5209 (1982).
[CrossRef]

W. Primak, “Stress relaxation of vitreous silica on irradiation,” J. Appl. Phys. 53(11), 7331–7342 (1982).
[CrossRef]

1980 (1)

Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
[CrossRef]

1974 (1)

E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45(1), 167–174 (1974).
[CrossRef]

Angell, C. A.

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Borick, S.

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Bouchut, P.

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[CrossRef]

Braunlich, P.

J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys. 53(7), 5200–5209 (1982).
[CrossRef]

Brebner, J. L.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

Buchenau, U.

A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
[CrossRef]

Chen, R.

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5–6), 625–661 (1997).
[CrossRef]

Copley, J. R. D.

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Decruppe, D.

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[CrossRef]

Delrive, L.

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[CrossRef]

EerNisse, E. P.

E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45(1), 167–174 (1974).
[CrossRef]

Fillard, J. P.

J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys. 53(7), 5200–5209 (1982).
[CrossRef]

Fontana, A.

A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
[CrossRef]

Fujimaki, M.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

Gasiot, J.

J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys. 53(7), 5200–5209 (1982).
[CrossRef]

Gibbons, J. F.

Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
[CrossRef]

Gold, R. B.

Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
[CrossRef]

Grilli, E.

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

Guzzi, M.

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

Harrowell, P.

A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys. 115(7), 3336–3341 (2001).
[CrossRef]

Huang, L.

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

Kieffer, J.

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

Lam, S. K.

Lawless, J. L.

J. L. Lawless, S. K. Lam, and D. Lo, “Nondestructive in situ thermoluminescence using CO(2) laser heating,” Opt. Express 10(6), 291–296 (2002).
[PubMed]

J. L. Lawless and D. Lo, “Thermoluminescence for nonlinear heating profiles with application to laser heated emissions,” J. Appl. Phys. 89(11), 6145–6152 (2001).
[CrossRef]

Lietoila, A.

Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
[CrossRef]

Lo, D.

J. L. Lawless, S. K. Lam, and D. Lo, “Nondestructive in situ thermoluminescence using CO(2) laser heating,” Opt. Express 10(6), 291–296 (2002).
[PubMed]

J. L. Lawless and D. Lo, “Thermoluminescence for nonlinear heating profiles with application to laser heated emissions,” J. Appl. Phys. 89(11), 6145–6152 (2001).
[CrossRef]

Lucchini, G.

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

Martini, M.

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

McKeever, S. W. S.

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5–6), 625–661 (1997).
[CrossRef]

Mossa, S.

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Nagata, S.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Nagel, S. R.

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
[CrossRef] [PubMed]

Naramoto, H.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Nishihara, Y.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

Nissim, Y. I.

Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
[CrossRef]

Ohki, Y.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

Ohtsu, N.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Orsingher, L.

A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
[CrossRef]

Pio, F.

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

Polman, A.

E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett. 65(19), 2487–2489 (1994).
[CrossRef]

C. A. Volkert and A. Polman, “Radiation-enhanced plastic flow of covalent materials during ion irradiation,” Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).
[CrossRef]

Primak, W.

W. Primak, “Stress relaxation of vitreous silica on irradiation,” J. Appl. Phys. 53(11), 7331–7342 (1982).
[CrossRef]

Roorda, S.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

Rossi, F.

A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
[CrossRef]

Shikama, T.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Silbert, L. E.

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
[CrossRef] [PubMed]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

Snoeks, E.

E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett. 65(19), 2487–2489 (1994).
[CrossRef]

Thomas, B.

A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys. 115(7), 3336–3341 (2001).
[CrossRef]

Toh, K.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Tsuchiya, B.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Vedda, A.

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

Volkert, C. A.

E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett. 65(19), 2487–2489 (1994).
[CrossRef]

C. A. Volkert and A. Polman, “Radiation-enhanced plastic flow of covalent materials during ion irradiation,” Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).
[CrossRef]

C. A. Volkert, “Stress and plastic flow in silicon during amorphization by ion bombardment,” J. Appl. Phys. 70(7), 3521–3527 (1991).
[CrossRef]

Wang, L.-M.

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Witten, T. A.

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
[CrossRef] [PubMed]

Wootton, A.

A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys. 115(7), 3336–3341 (2001).
[CrossRef]

Wyart, M.

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
[CrossRef] [PubMed]

Yamamoto, S.

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

Yue, Y.

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006).
[CrossRef]

E. Snoeks, A. Polman, and C. A. Volkert, “Densification, anisotropic deformation, and plastic flow of SiO2 during MeV heavy ion irradiation,” Appl. Phys. Lett. 65(19), 2487–2489 (1994).
[CrossRef]

J. Appl. Phys. (8)

C. A. Volkert, “Stress and plastic flow in silicon during amorphization by ion bombardment,” J. Appl. Phys. 70(7), 3521–3527 (1991).
[CrossRef]

P. Bouchut, D. Decruppe, and L. Delrive, “Fused silica thermal conductivity dispersion at high temperature,” J. Appl. Phys. 96(6), 3221–3227 (2004).
[CrossRef]

E. P. EerNisse, “Compaction of ion-implanted fused silica,” J. Appl. Phys. 45(1), 167–174 (1974).
[CrossRef]

J. L. Lawless and D. Lo, “Thermoluminescence for nonlinear heating profiles with application to laser heated emissions,” J. Appl. Phys. 89(11), 6145–6152 (2001).
[CrossRef]

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88(10), 5534–5537 (2000).
[CrossRef]

Y. I. Nissim, A. Lietoila, R. B. Gold, and J. F. Gibbons, “Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam,” J. Appl. Phys. 51(1), 274–279 (1980).
[CrossRef]

J. Gasiot, P. Braunlich, and J. P. Fillard, “Laser heating in thermoluminescence dosimetry,” J. Appl. Phys. 53(7), 5200–5209 (1982).
[CrossRef]

W. Primak, “Stress relaxation of vitreous silica on irradiation,” J. Appl. Phys. 53(11), 7331–7342 (1982).
[CrossRef]

J. Chem. Phys. (1)

A. Wootton, B. Thomas, and P. Harrowell, “Radiation-induced densification in amorphous silica: A computer simulation study,” J. Chem. Phys. 115(7), 3336–3341 (2001).
[CrossRef]

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

J. Nucl. Mater. (1)

S. Nagata, S. Yamamoto, K. Toh, B. Tsuchiya, N. Ohtsu, T. Shikama, and H. Naramoto, “Luminescence in SiO2 induced by MeV energy proton irradiation,” J. Nucl. Mater. 329–333, 1507–1510 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

C. A. Angell, Y. Yue, L.-M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, “Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses,” J. Phys. Condens. Matter 15(11), S1051–S1068 (2003).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

C. A. Volkert and A. Polman, “Radiation-enhanced plastic flow of covalent materials during ion irradiation,” Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

A. Fontana, L. Orsingher, F. Rossi, and U. Buchenau, “Dynamics of a hydrogenated silica xerogel: A neutron scattering study,” Phys. Rev. B 74(17), 172304 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, “Effects of compression on the vibrational modes of marginally jammed solids,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 051306 (2005).
[CrossRef] [PubMed]

Radiat. Meas. (1)

S. W. S. McKeever and R. Chen, “Luminescence models,” Radiat. Meas. 27(5–6), 625–661 (1997).
[CrossRef]

Solid State Commun. (1)

M. Guzzi, G. Lucchini, M. Martini, F. Pio, A. Vedda, and E. Grilli, “Thermally stimulated luminescence above room temperature of amorphous SiO2,” Solid State Commun. 75(2), 75–79 (1990).
[CrossRef]

Other (1)

The 1000K temperature bound is obtained by the downscaling of the temperature determined in [4] for a larger beam waist and lower power.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Incandescence signal from juxtaposed sites in stressed silica with increased excitation power. The dotted lines represent the calculated background incandescence at each excitation power.

Fig. 2
Fig. 2

Incident laser power and peak inverse time versus transient incandescence intensity

Fig. 3
Fig. 3

(a) 2D incandescence mapping of half the E2 silica disk implanted with three protons dose at a laser power of 0.8W, left, and 1.4W, right. The gray scale intensity is reduced by 4 on the 0.8W map in order to better see the polishing defects. (b) Transient incandescence intensity from the red squared areas versus the implanted dose at the two laser powers.

Fig. 4
Fig. 4

Relief mapping of the interface between the 7 1014 and 1.4 1015 H+/cm2 implanted areas. On the X profile the laser scanning at a 200 µm pitch can be observed. On the Y profile, a positive step height of 10 nm can be measured between the two zones.

Tables (1)

Tables Icon

Table 1 Implantation conditions

Metrics