Abstract

Cost effective lasers meeting the linewidth requirements for coherent communication systems are a key element in reducing the overall cost of future coherent systems. We report on monolithic devices with linewidths as low as 138 kHz which operate in a narrow linewidth, single wavelength mode with high sidemode suppression ratio over a wide temperature tuning range of −10 °C < T < 110 °C. A linewidth variation of only 23 kHz was measured at a constant emitted power of 4 mW as the device temperature is varied in the range 0 °C < T < 85 °C.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, M. O'Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
    [CrossRef]
  2. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
    [CrossRef]
  3. D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express 18(25), 25855–25860 (2010).
    [CrossRef] [PubMed]
  4. M. Seimetz, “Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?uri=OFC-2008-OTuM2
  5. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M -QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  6. C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
    [CrossRef]
  7. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [CrossRef]
  8. P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
    [CrossRef]
  9. C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
    [CrossRef]
  10. C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).
  11. J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
    [CrossRef]
  12. R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
    [CrossRef]
  13. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980).
    [CrossRef]
  14. M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
    [CrossRef]

2011

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

2010

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express 18(25), 25855–25860 (2010).
[CrossRef] [PubMed]

2009

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M -QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[CrossRef]

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

K. Roberts, M. O'Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
[CrossRef]

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

2005

J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
[CrossRef]

2002

C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).

1994

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

1990

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

1980

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980).
[CrossRef]

Anandarajah, P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Andreadakis, N. C.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Awadalla, A.

Barry, L. P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Beckett, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Berthold, J.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Bhat, R.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Boertjes, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Darby, D.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Duke, A.

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

Ellis, A. D.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Favire, F.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Flanders, D.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Frascella, P.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

Gruner-Nielsen, L.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Gunning, F. C.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

Han, S.

Herbert, C.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Hoffmann, S.

Hsieh, J. J.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Hwang, D. M.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Ionescu, M.

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Jones, D.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
[CrossRef]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Kaszubowska-Anandarajah, A.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Kelly, B.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980).
[CrossRef]

Koza, M. A.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Krause, D. J.

Laperle, C.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

K. Roberts, M. O'Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
[CrossRef]

Lavery, D.

Lee, T. P.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Lin, W.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Makovejs, S.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980).
[CrossRef]

Nielsen, S. K.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

Noe, R.

O’Carroll, J.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

O'Carroll, J.

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

O'Gorman, J.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980).
[CrossRef]

O'Sullivan, M.

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Patchell, J.

J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
[CrossRef]

Pathak, B. N.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Perry, P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Pfau, T.

Phelan, R.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

Piprik, C. J.

C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).

Rensing, M.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Roberts, K.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

K. Roberts, M. O'Sullivan, K.-T. Wu, S. Han, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
[CrossRef]

Savory, S. J.

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Spano, P.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

Spring Thorpe, A. J.

C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).

Sygletos, S.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Torrengo, E.

van Deventer, M. O.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

Wang, M. C.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Wang, Z.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Weerasuriya, R.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

White, J. K.

C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).

Wu, K.-T.

Zah, C. E.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

Electron. Lett.

R. Phelan, B. Kelly, J. O'Carroll, C. Herbert, A. Duke, and J. O'Gorman, “- 40°C < T < 95°C mode-hop free operation of an uncooled AlGaInAs-MQW discrete-mode laser diode with emission at λ = 1.3 μm,” Electron. Lett. 45(1), 43–45 (2009).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel Method for High Resolution Measurement of Laser Output Spectrum,” Electron. Lett. 16(16), 630–632 (1980).
[CrossRef]

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

IEEE Commun. Mag.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

IEEE J. Quantum Electron.

C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3-µm AlxGayIn1-x-yAs/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30(2), 511–523 (1994).
[CrossRef]

C. J. Piprik, J. K. White, and A. J. Spring Thorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?” IEEE J. Quantum Electron. 38(9), 1253–1259 (2002).

IEEE Photon. Technol. Lett.

P. Frascella, S. Sygletos, F. C. Gunning, R. Weerasuriya, L. Gruner-Nielsen, R. Phelan, J. O'Gorman, and A. D. Ellis, “DPSK Signal Regeneration With a Dual-Pump Nondegenerate Phase-Sensitive Amplifier,” IEEE Photon. Technol. Lett. 23(8), 516–518 (2011).
[CrossRef]

IET Optoelectron.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Opt. Express

Proc. SPIE

J. Patchell, D. Jones, B. Kelly, and J. O'Gorman, “Specifying the wavelength and temperature tuning range of a Fabry-Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 1–13 (2005).
[CrossRef]

Other

M. Seimetz, “Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?uri=OFC-2008-OTuM2

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Linewidth characteristics at 25 °C; (a) linewidth versus inverse power, (b) measured lineshape with a bias current of 300mA.

Fig. 2
Fig. 2

Spectral characteristics over the temperature range −10 °C < T < 110 °C; (a) overlapped spectra, (b) peak wavelength and SMSR versus temperature.

Fig. 3
Fig. 3

Linewidth versus temperature at constant power in the fibre of 4 mW and also at a constant bias current of 250 mA.

Fig. 4
Fig. 4

(a) Overlapped light-current plot measured ex-fibre over the temperature range 0 °C < T < 85 °C, (b) Peak wavelength and SMSR versus bias current at 25 °C.

Fig. 5
Fig. 5

(a) Measured lineshape at 25 °C with a bias current of 300mA, (b) Overlapped light-current plot measured ex-facet over the temperature range 0 °C < T < 85 °C.

Fig. 6
Fig. 6

Spectral characteristics over the temperature range 0 °C < T < 95 °C; (a) overlapped spectra, (b) peak wavelength and SMSR versus temperature.

Metrics