Abstract

The paper addresses the problem of distribution of high-definition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed video transmission over 60 GHz fiber-wireless link. Using advanced video coding we satisfy low complexity and low delay constraints, meanwhile preserving the superb video quality after significantly extended wireless distance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Beltrán, J. B. Jensen, X. Yu, R. Llorente, and I. T. Monroy, “Experimental performance comparison of 60 GHz DCM OFDM and impulse BPSK ultra-wideband with combined optical fibre and wireless transmission,” in ECOC, 1465–1467 (2010).
  2. Z. Jia, H.-C. Chien, Y.-T. Hsueh, A. Chowdhury, J. Yu, and G.-K. Chang, “Wireless HD services over optical access systems: Transmission, networking, and demonstration,” in OFC, 1–5 (2009).
  3. M. Weiß, “60 GHz photonic millimeter-wave communication systems,” thesis (2010).
  4. A. Belogolovy, E. Belyaev, A. Sergeev, and A. Turlikov, “Video compression for wireless transmission: reducing the power consumption of the WPAN hi-speed systems,” NEW2AN/ruSMART 2009, LNCS 5764, 313–322 (2009).
  5. http://iphome.hhi.de/suehring/tml/ .
  6. T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans.Circuits Syst. Video Technol. 13(7), 657–673 (2003).
    [CrossRef]
  7. I. E. Richardson, The H.264 Advanced Video Compression Standard (Wiley, 2010).
  8. http://www.vpiphotonics.com/ .
  9. S.-K. Yong, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice (Wiley, 2011), Chap. 2.
  10. S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw. 2007(1), 078907 (2007).
  11. K.-C. Huang and D. J. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communications: A Practical Guide to Design and Analysis in a System Context (Wiley, 2008).

2007 (1)

S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw. 2007(1), 078907 (2007).

2003 (1)

T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans.Circuits Syst. Video Technol. 13(7), 657–673 (2003).
[CrossRef]

Chong, C.-C.

S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw. 2007(1), 078907 (2007).

Hannuksela, M. M.

T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans.Circuits Syst. Video Technol. 13(7), 657–673 (2003).
[CrossRef]

Stockhammer, T.

T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans.Circuits Syst. Video Technol. 13(7), 657–673 (2003).
[CrossRef]

Wiegand, T.

T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans.Circuits Syst. Video Technol. 13(7), 657–673 (2003).
[CrossRef]

Yong, S. K.

S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw. 2007(1), 078907 (2007).

EURASIP J. Wireless Commun. Netw. (1)

S. K. Yong and C.-C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw. 2007(1), 078907 (2007).

IEEE Trans.Circuits Syst. Video Technol. (1)

T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless environments,” IEEE Trans.Circuits Syst. Video Technol. 13(7), 657–673 (2003).
[CrossRef]

Other (9)

I. E. Richardson, The H.264 Advanced Video Compression Standard (Wiley, 2010).

http://www.vpiphotonics.com/ .

S.-K. Yong, 60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice (Wiley, 2011), Chap. 2.

M. Beltrán, J. B. Jensen, X. Yu, R. Llorente, and I. T. Monroy, “Experimental performance comparison of 60 GHz DCM OFDM and impulse BPSK ultra-wideband with combined optical fibre and wireless transmission,” in ECOC, 1465–1467 (2010).

Z. Jia, H.-C. Chien, Y.-T. Hsueh, A. Chowdhury, J. Yu, and G.-K. Chang, “Wireless HD services over optical access systems: Transmission, networking, and demonstration,” in OFC, 1–5 (2009).

M. Weiß, “60 GHz photonic millimeter-wave communication systems,” thesis (2010).

A. Belogolovy, E. Belyaev, A. Sergeev, and A. Turlikov, “Video compression for wireless transmission: reducing the power consumption of the WPAN hi-speed systems,” NEW2AN/ruSMART 2009, LNCS 5764, 313–322 (2009).

http://iphome.hhi.de/suehring/tml/ .

K.-C. Huang and D. J. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communications: A Practical Guide to Design and Analysis in a System Context (Wiley, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental 60 GHz optical-wireless RoF system with envelope detection, LD-laser diode, PC-polarization controller, MZM-Mach-Zehnder modulator, LO-local oscillator, EDFA-Erbium doped fiber amplifier, OBPF-optical band pass filter, PD-photodiode, LNA-low noise amplifier, PA-power amplifier, BPF-band pass filter, ED- envelope detector, LPF-low pass filter, DSO-digital sampling oscilloscope.

Fig. 2
Fig. 2

Optical spectra on the input of the PD.

Fig. 3
Fig. 3

Phase noise of RF subcarriers.

Fig. 4
Fig. 4

RF spectrum measured before the antenna.

Fig. 5
Fig. 5

BER as a function of the wireless distance.

Fig. 6
Fig. 6

PSNR as a function of the wireless distance.

Fig. 7
Fig. 7

BER as a function of the optical power at the photodiode.

Fig. 8
Fig. 8

PSNR as a function of the optical power at the photodiode.

Fig. 9
Fig. 9

PSNR as a function of the wireless distance for different packet sizes of the encoded video for the bitrate of 312.5 Mbps.

Fig. 10
Fig. 10

PSNR performance as a function of the wireless distance for FMO effect estimation.

Tables (1)

Tables Icon

Table 1 System Parameters for Modeling

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

MSE= 1 N i=1 N ( x i y i ) 2 ,
PSNR=10log ( L 2 MSE ) 10 ,
SNR= P tx + G T + G R + G LN A tx +P A tx + G LN A rx +P A rx PL (10 log 10 (KTB)+N F LN A tx +P A tx +N F LN A rx +P A rx ),
PL=PL( d 0 )+10nlog ( d d 0 ) 10 ,
SNR= P br + G T + G R + G LN A rx +P A rx PL( d 0 )10nlog ( d d 0 ) 10 (10 log 10 (KTB)+N F LN A tx +P A tx +N F LN A rx +P A rx ).

Metrics