Abstract

We present a new class of optical modulation formats based on the combination of m-ary pulse-position modulation (m-PPM) or m-ary frequency-shift keying (FSK) with additional polarization and/or phase modulation, which is applied on the information carrying pulses in the case of m-PPM or on the information carrying frequency carriers in the case of m-FSK. We describe the principle and implementation of this class of optical modulation formats, and formulate their theoretical receiver sensitivities in optically pre-amplified receivers. Pilot-assisted frequency-domain equalization, similar to that used in coherent optical orthogonal frequency-division multiplexing (CO-OFDM), is used for reliable channel estimation and compensation. CO-OFDM also allows m-FSK to be implemented with high spectral efficiency. As a particular format in this class, m-PPM in combination with polarization-division-multiplexed quadrature phase-shift keying (PDM-QPSK), termed as PQ-mPPM, offers superior receiver sensitivity in optically pre-amplified receivers at bit error ratios (BERs) around the thresholds of common forward-error correction codes. Record receiver sensitivities of 3.5 photons per bit (ppb) at BER = 10−3 and 2.7 ppb at BER = 1.5 × 10−2 are experimentally demonstrated at 2.5 Gb/s and 6.23 Gb/s using PQ-16PPM and PQ-4PPM, respectively. We further demonstrate the transmission of a 6.23-Gb/s PQ-4PPM signal over a 370-km unrepeatered ultra-large-area-fiber span with 71.7-dB total loss budget.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
    [CrossRef]
  2. D. O. Caplan, M. L. Stevens, and B. S. Robinson, “Free-space laser communications: global communications and beyond,” European Conference on Optical Communication (ECOC), Tutorial, Paper 9.6.1, Vienna, Austria, September 2009.
  3. P. Bousselet, H. Bissessur, J. Lestrade, M. Salsi, L. Pierre, and D. Mongardien, “High capacity (64 x 43 Gb/s) unrepeatered transmission over 440 km,” OFC’11, OMI2.
  4. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
    [CrossRef] [PubMed]
  5. D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 Gslot/sec optically-preamplified M-PPM with 4 photons/bit receiver sensitivity,” OFC’05, Postdeadline paper PDP32.
  6. N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan, and M. L. Stevens, “High-sensitivity 40 Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16(6), 1579–1581 (2004).
    [CrossRef]
  7. X. Liu, S. Chandrasekhar, and A. Leven, “Self-Coherent Optical Transport Systems,” in Optical Fiber Telecommunications V B, Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, Burlington, MA, 2008) Chapter 4.
  8. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  9. K. Kikuchi, “Coherent Optical Communication Systems,” in Optical Fiber Telecommunications V B, Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, Burlington, MA, 2008), Chapter 3.
  10. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  11. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [CrossRef] [PubMed]
  12. T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
    [CrossRef]
  13. H. Bülow and E. Masalkina, “Coded modulation in optical communications,” OFC’11, paper OThO1.
  14. X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-Assisted digital coherent detection,” OFC’11, PDB1.
  15. X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically pre-amplified receivers by combining PDM-QPSK and m-ary pulse-position modulation,” J. Lightwave Technol. (accepted for publication) (invited paper).
  16. X. Liu, S. Chandrasekhar, T. H. Wood, R. W. Tkach, E. C. Burrows, and P. J. Winzer, “Demonstration of 2.7-PPB receiver sensitivity using PDM-QPSK with 4-PPM and unrepeatered transmission over a single 370-km unamplified ultra-large-area fiber span,” ECOC’11, paper Tu.3.B.4.
  17. F. Chang, “Application aspects of enhanced HD-FEC for 40/100G systems,” ECOC’10, workshop talk WS11–6.
  18. H. Sugiyama and K. Nosu, “MPPM: A method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7(3), 465–472 (1989).
    [CrossRef]
  19. I. S. Reed and R. A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans. Inf. Theory 12(3), 388–395 (1966).
    [CrossRef]
  20. W. C. Lindsey and M. K. Simon, “L–Orthogonal Signal Transmission and Detection,” IEEE Trans. Commun. 20(5), 953–960 (1972).
    [CrossRef]
  21. J. G. Proakis, Digital Communications, 4th ed. (Boston, MA 2001).
  22. M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” ECOC’11, paper Tu.6.B.6.
  23. D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2011), paper PDPB12.
  24. K. Kikuchi and M. Osaki, “Highly-sensitive coherent optical detection of M-ary frequency-shift keying signal,” ECOC’11, paper Tu.5.A.1.
  25. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?” J. Opt. Netw. 7(3), 234–255 (2008).
    [CrossRef]
  26. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [CrossRef]
  27. D. Lavery, E. Torrengo, and S. J. Savory, “Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers,” OFC’11, OTuB4.

2011

2009

2008

2007

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[CrossRef]

2006

2004

N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan, and M. L. Stevens, “High-sensitivity 40 Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16(6), 1579–1581 (2004).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

1989

H. Sugiyama and K. Nosu, “MPPM: A method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7(3), 465–472 (1989).
[CrossRef]

1972

W. C. Lindsey and M. K. Simon, “L–Orthogonal Signal Transmission and Detection,” IEEE Trans. Commun. 20(5), 953–960 (1972).
[CrossRef]

1966

I. S. Reed and R. A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans. Inf. Theory 12(3), 388–395 (1966).
[CrossRef]

Agrell, E.

Akita, M.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Barron, R. J.

Berggren, K. K.

Caplan, D. O.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[CrossRef]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
[CrossRef] [PubMed]

N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan, and M. L. Stevens, “High-sensitivity 40 Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16(6), 1579–1581 (2004).
[CrossRef]

Carney, J. J.

Chandrasekhar, S.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[CrossRef]

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically pre-amplified receivers by combining PDM-QPSK and m-ary pulse-position modulation,” J. Lightwave Technol. (accepted for publication) (invited paper).

Dauler, E. A.

Fujita, H.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Gnauck, A. H.

Gottschalk, J. C.

N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan, and M. L. Stevens, “High-sensitivity 40 Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16(6), 1579–1581 (2004).
[CrossRef]

Hamilton, S. A.

Karlsson, M.

Kerman, A. J.

Kobayashi, T.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Kubo, K.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Kuno, K.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Lindsey, W. C.

W. C. Lindsey and M. K. Simon, “L–Orthogonal Signal Transmission and Detection,” IEEE Trans. Commun. 20(5), 953–960 (1972).
[CrossRef]

Liu, X.

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[CrossRef]

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically pre-amplified receivers by combining PDM-QPSK and m-ary pulse-position modulation,” J. Lightwave Technol. (accepted for publication) (invited paper).

Ma, Y.

Miyata, Y.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Mizuochi, T.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Motoshima, K.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Nosu, K.

H. Sugiyama and K. Nosu, “MPPM: A method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7(3), 465–472 (1989).
[CrossRef]

Ouchi, K.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Peckham, D. W.

Reed, I. S.

I. S. Reed and R. A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans. Inf. Theory 12(3), 388–395 (1966).
[CrossRef]

Robinson, B. S.

Savory, S. J.

Scholtz, R. A.

I. S. Reed and R. A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans. Inf. Theory 12(3), 388–395 (1966).
[CrossRef]

Shieh, W.

Shimizu, K.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Simon, M. K.

W. C. Lindsey and M. K. Simon, “L–Orthogonal Signal Transmission and Detection,” IEEE Trans. Commun. 20(5), 953–960 (1972).
[CrossRef]

Spellmeyer, N. W.

N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan, and M. L. Stevens, “High-sensitivity 40 Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16(6), 1579–1581 (2004).
[CrossRef]

Stevens, M. L.

Sugiyama, H.

H. Sugiyama and K. Nosu, “MPPM: A method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7(3), 465–472 (1989).
[CrossRef]

Tagami, H.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Tkach, R. W.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically pre-amplified receivers by combining PDM-QPSK and m-ary pulse-position modulation,” J. Lightwave Technol. (accepted for publication) (invited paper).

Winzer, P. J.

Wood, T. H.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically pre-amplified receivers by combining PDM-QPSK and m-ary pulse-position modulation,” J. Lightwave Technol. (accepted for publication) (invited paper).

Yang, J. K. W.

Yang, Q.

Yi, X.

Yoshida, H.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

Zhu, B.

IEEE J. Sel. Top. Quantum Electron.

T. Mizuochi, Y. Miyata, T. Kobayashi, K. Ouchi, K. Kuno, K. Kubo, K. Shimizu, H. Tagami, H. Yoshida, H. Fujita, M. Akita, and K. Motoshima, “Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

N. W. Spellmeyer, J. C. Gottschalk, D. O. Caplan, and M. L. Stevens, “High-sensitivity 40 Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16(6), 1579–1581 (2004).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

IEEE Trans. Commun.

W. C. Lindsey and M. K. Simon, “L–Orthogonal Signal Transmission and Detection,” IEEE Trans. Commun. 20(5), 953–960 (1972).
[CrossRef]

IEEE Trans. Inf. Theory

I. S. Reed and R. A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans. Inf. Theory 12(3), 388–395 (1966).
[CrossRef]

J. Lightwave Technol.

H. Sugiyama and K. Nosu, “MPPM: A method for improving the band-utilization efficiency in optical PPM,” J. Lightwave Technol. 7(3), 465–472 (1989).
[CrossRef]

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[CrossRef]

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivities in optically pre-amplified receivers by combining PDM-QPSK and m-ary pulse-position modulation,” J. Lightwave Technol. (accepted for publication) (invited paper).

J. Opt. Fiber Commun. Rep.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[CrossRef]

J. Opt. Netw.

Opt. Express

Opt. Lett.

Other

D. O. Caplan, M. L. Stevens, and B. S. Robinson, “Free-space laser communications: global communications and beyond,” European Conference on Optical Communication (ECOC), Tutorial, Paper 9.6.1, Vienna, Austria, September 2009.

P. Bousselet, H. Bissessur, J. Lestrade, M. Salsi, L. Pierre, and D. Mongardien, “High capacity (64 x 43 Gb/s) unrepeatered transmission over 440 km,” OFC’11, OMI2.

D. O. Caplan, B. S. Robinson, R. J. Murphy, and M. L. Stevens, “Demonstration of 2.5 Gslot/sec optically-preamplified M-PPM with 4 photons/bit receiver sensitivity,” OFC’05, Postdeadline paper PDP32.

K. Kikuchi, “Coherent Optical Communication Systems,” in Optical Fiber Telecommunications V B, Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, Burlington, MA, 2008), Chapter 3.

X. Liu, S. Chandrasekhar, and A. Leven, “Self-Coherent Optical Transport Systems,” in Optical Fiber Telecommunications V B, Systems and Networks, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, Burlington, MA, 2008) Chapter 4.

X. Liu, S. Chandrasekhar, T. H. Wood, R. W. Tkach, E. C. Burrows, and P. J. Winzer, “Demonstration of 2.7-PPB receiver sensitivity using PDM-QPSK with 4-PPM and unrepeatered transmission over a single 370-km unamplified ultra-large-area fiber span,” ECOC’11, paper Tu.3.B.4.

F. Chang, “Application aspects of enhanced HD-FEC for 40/100G systems,” ECOC’10, workshop talk WS11–6.

H. Bülow and E. Masalkina, “Coded modulation in optical communications,” OFC’11, paper OThO1.

X. Liu, T. H. Wood, R. W. Tkach, and S. Chandrasekhar, “Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-Assisted digital coherent detection,” OFC’11, PDB1.

J. G. Proakis, Digital Communications, 4th ed. (Boston, MA 2001).

M. Karlsson and E. Agrell, “Generalized pulse-position modulation for optical power-efficient communication,” ECOC’11, paper Tu.6.B.6.

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2011), paper PDPB12.

K. Kikuchi and M. Osaki, “Highly-sensitive coherent optical detection of M-ary frequency-shift keying signal,” ECOC’11, paper Tu.5.A.1.

D. Lavery, E. Torrengo, and S. J. Savory, “Bidirectional 10 Gbit/s long-reach WDM-PON using digital coherent receivers,” OFC’11, OTuB4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Illustration of the encoding of a PQ-4PPM/FSK signal.

Fig. 2
Fig. 2

Theoretical receiver sensitivity performance of m-PPM assuming that the ASE noise is not polarization filtered before detection.

Fig. 3
Fig. 3

Theoretical receiver sensitivity performance of PQ-mPPM (PQP).

Fig. 4
Fig. 4

Comparison between the BER performances of PQ-16PPM obtained by the analytical study and those by numerical simulations.

Fig. 5
Fig. 5

Receiver sensitivity improvement of PQ-mPPM over BPSK and PDM-QPSK (at BER = 10−3) versus log2(m).

Fig. 6
Fig. 6

BWEF of m-PPM and PQ-mPPM as a function of log2(m).

Fig. 7
Fig. 7

Illustration of the encoding of a PolSK-4FSK signal.

Fig. 8
Fig. 8

Theoretical receiver sensitivity performance of PolSK-mFSK.

Fig. 9
Fig. 9

BWEF of m-PPM and PolSK-mFSK as a function of log2(m).

Fig. 10
Fig. 10

Schematic of the experimental setup. Insets: (a) power waveform of the 6.23-Gb/s PQ-4PPM signal; (b) signal constellation before PPM demodulation; (c) signal constellation after PPM demodulation and phase compensation.

Fig. 11
Fig. 11

Frame structure of the PA-SC-FDE scheme used for PQ-4PPM.

Fig. 12
Fig. 12

Theoretical and experimental performance of PQ-4PPM and PDM-QPSK.

Fig. 13
Fig. 13

Measured BER performance as a function of signal launch power after transmission over a 370-km ULAF link.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

BER m-PPM = m 2(m1) SER mPPM
BER A-mPPM/FSK = 1 log 2 (m)+p {SER mPPM [ p 2 + m log 2 (m) 2(m1) ]+(1 SER mPPM )p BER AddM }
BER A-mPPM/FSK = 1 2 SER mPPM + p log 2 (m)+p BER AddM
SER mPPM = v=0 f 1 ( SNR sym ,v)P( v 0 >v) dv
P( v 0 >v)=1 ( 1 p 0 ( SNR sym ,v ) m1
SNR b = SNR sym /[log 2 (m)+p]
BWEF m-PPM =m/ log 2 m,
BWEF Add-mPPM/FSK =m/( log 2 m+p).
BER PQ-mPPM/FSK = 1 log 2 (m)+4 {SER mPPM [2+ m log 2 (m) 2(m1) ]+(1 SER mPPM )4 BER PDMQPSK },
BER PDMQPSK =0.5erfc( SNR sym /4 ).
BER PS-QPSK-mPPM = 1 log 2 (m)+3 { SER mPPM [ 3 2 + m log 2 (m) 2(m1) ]+(1 SER mPPM )3 BER PSQPSK },
BER PS-QPSK = 1 3 [2 SER PS +2 BER QPSK (1 SER PS )],

Metrics