Abstract

We experimentally verify that pilot-based nonlinearity compensation is effective for mitigating XPM in CO-OFDM systems, if SPM is compensated first. A 6-dB increase in the nonlinear limit was produced by pilot-based XPM compensation after a single-step SPM compensator in a 400-km link with periodic dispersion compensation. In addition, we use numerical simulations to show that the required bandwidth of the guard-band around the pilot is almost independent of the bandwidth of the data-carrying sidebands. The optimal ratio of pilot to signal power also decreases for higher bandwidth OFDM signals. Therefore, the overhead associated with transmitting the pilot decreases as the bandwidth of the signal increases.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express 15(16), 9936–9947 (2007).
    [CrossRef] [PubMed]
  2. K. Kikuchi, M. Fukase, and S.-Y. Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), OTuA2.
  3. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
    [CrossRef] [PubMed]
  4. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  5. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  6. L. B. Du and A. J. Lowery, “Fiber nonlinearity compensation for CO-OFDM systems with periodic dispersion maps,” in Optical Fiber Communication Conference (Optical Society of America, 2009), OTuO1.
  7. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
    [CrossRef]
  8. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  9. L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
    [CrossRef]
  10. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [CrossRef]
  11. B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-based nonlinearity compensation for optical OFDM systems,” in European Conference on Optical Communication (EUREL, 2010), Tu.4.A.6.
  12. A. Lobato, B. Inan, S. Adhikari, and S. L. Jansen, “On the efficiency of RF-Pilot-based nonlinearity compensation for CO-OFDM,” in Optical Fiber Communication Conference (OSA, Los Angeles, California, 2011), p. OThF2.
  13. L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett. 36(9), 1647–1649 (2011).
    [CrossRef] [PubMed]
  14. L. B. Du and A. J. Lowery, “Experimental demonstration of pilot-based XPM nonlinearity compensator for CO-OFDM systems,” in European Conference on Optical Communication (OSA, 2011), Th.11.B.14.
  15. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]

2011

2010

A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[CrossRef]

2008

2007

1983

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Chen, X.

Cotter, D.

Du, L. B.

Ellis, A. D.

Gavioli, G.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Goldfarb, G.

Ip, E.

Jansen, S. L.

Kahn, J. M.

Kim, I.

Li, G.

Li, X.

Lowery, A. J.

Ma, Y.

Mateo, E.

Morita, I.

Poggiolini, P.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Savory, S. J.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Schenk, T. C. W.

Shieh, W.

Takeda, N.

Tanaka, H.

Tang, Y.

Torrengo, E.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Yaman, F.

Yi, X.

Zhao, J.

IEEE Photon. Technol. Lett.

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(5), 320–322 (2010).
[CrossRef]

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010).
[CrossRef]

IEEE Trans. Inf. Theory

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

L. B. Du and A. J. Lowery, “Experimental demonstration of pilot-based XPM nonlinearity compensator for CO-OFDM systems,” in European Conference on Optical Communication (OSA, 2011), Th.11.B.14.

K. Kikuchi, M. Fukase, and S.-Y. Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), OTuA2.

L. B. Du and A. J. Lowery, “Fiber nonlinearity compensation for CO-OFDM systems with periodic dispersion maps,” in Optical Fiber Communication Conference (Optical Society of America, 2009), OTuO1.

B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-based nonlinearity compensation for optical OFDM systems,” in European Conference on Optical Communication (EUREL, 2010), Tu.4.A.6.

A. Lobato, B. Inan, S. Adhikari, and S. L. Jansen, “On the efficiency of RF-Pilot-based nonlinearity compensation for CO-OFDM,” in Optical Fiber Communication Conference (OSA, Los Angeles, California, 2011), p. OThF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram showing the experimental setup. The DCM compensates for 90-km of S-SMF; PC-polarisation controller.

Fig. 2
Fig. 2

Received Q against the LPF bandwidth for PB-NLC at different optical launch powers.

Fig. 3
Fig. 3

Received optical spectra measured with an Agilent high-resolution spectrometer: (a) single-wavelength system at 4 dBm launch power; (b) WDM system at 12-dBm launch power (3.5 dBm/wavelength).

Fig. 4
Fig. 4

Experimental Q against launch power with different nonlinearity compensation methods. A 200-MHz LPF was used in the PB-NLC.

Fig. 5
Fig. 5

Simulated optical spectra after 400 km: (a) EXP system at 0 dBm/wavelength; (b) 100G system at 2 dBm/wavelength.

Fig. 6
Fig. 6

(a-c) Simulated received Q against LPF bandwidth of pilot filter for the three different systems. (d) Simulated received Q against pilot power for all three systems.

Metrics