Abstract

A frequency-sweep-free method for distributed Brillouin sensing is proposed, having the potential for fast dynamic strain measurements. In this reported implementation of the method, multiple probe waves with carefully chosen optical frequencies simultaneously propagate in the fiber against an equal number of sequentially-launched, short pump pulses of matching frequencies, where each of pump-probe pair replaces one sweeping step in the classical BOTDA technique. Experimentally, distributed sensing is demonstrated with a spatial resolution of a few meters.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2008), Chap. 9.
  2. M. Barnoski and S. Personick, “Measurements in Fiber Optics,” Proc. IEEE 66(4), 429–441 (1978).
    [CrossRef]
  3. S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
    [CrossRef]
  4. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]
  5. Y. Peled, A. Motil, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers”, Optical Fiber Sensor conference, OFS21, Ottawa, Canada, (2011).
  6. P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
    [CrossRef]
  7. A. Voskoboinik, J. Wang, B. Shamee, S. Nuccio, L. Zhang, M. Chitgarha, A. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [CrossRef]
  8. A. Voskoboinik, J. Wang, A. E. Willner, and M. Tur, “Frequency-domain simultaneous tone interrogation for faster, sweep-free Brillouin distributed sensing”, 21st Inter. Conference of Optical Fiber Sensors, Proc. Of SPIE, 7753 (2011)
  9. A. Voskoboinik, O.F. Yilmaz, A.E. Willner and M. Tur, “Sweep-free distributed Brillouin sensing using multiple pump and probe tones”, ECOC, Geneva, Switzerland, September 2011.
  10. S. Damzen, V. Vlad, V. Babin and A. Mocofanescu, Stimulated Brillouin Scattering, Fundamentals and Applications (Institute of Physics Publishing, 2003), Chap. 1.
  11. K. -D. Chung, G. -C. Yang, and W. C. Kwong, “Determination of FWM products in unequal-spaced-channel WDM lightwave systems,” J. Lightwave Technol. 18(12), 2113–2122 (2000).
    [CrossRef]

2011

2009

2008

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

2000

1978

M. Barnoski and S. Personick, “Measurements in Fiber Optics,” Proc. IEEE 66(4), 429–441 (1978).
[CrossRef]

Barnoski, M.

M. Barnoski and S. Personick, “Measurements in Fiber Optics,” Proc. IEEE 66(4), 429–441 (1978).
[CrossRef]

Bernini, R.

Brown, A. W.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Chaube, P.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Chitgarha, M.

Chung, K. -D.

Colpitts, B. G.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Diaz, S.

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

Foaleng, S.

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

Jagannathan, D.

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

Kwong, W. C.

Lopez-Amo,

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

Mafang, M.

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

Minardo, A.

Nuccio, S.

Personick, S.

M. Barnoski and S. Personick, “Measurements in Fiber Optics,” Proc. IEEE 66(4), 429–441 (1978).
[CrossRef]

Shamee, B.

Thevenaz, L.

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

Tur, M.

Voskoboinik, A.

Wang, J.

Willner, A.

Yang, G. -C.

Zeni, L.

Zhang, L.

IEEE Sens. J.

S. Diaz, S. Foaleng, M. Mafang, Lopez-Amo, and L. Thevenaz, “A high performance Optical Time-Domain Brillouin Distributed Fiber Sensor,” IEEE Sens. J. 8(7), 1268–1272 (2008).
[CrossRef]

P. Chaube, B. G. Colpitts, D. Jagannathan, and A. W. Brown, “Distributed fiber-optic sensor for dynamic strain measurement,” IEEE Sens. J. 8(7), 1067–1072 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Proc. IEEE

M. Barnoski and S. Personick, “Measurements in Fiber Optics,” Proc. IEEE 66(4), 429–441 (1978).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic Press, 2008), Chap. 9.

A. Voskoboinik, J. Wang, A. E. Willner, and M. Tur, “Frequency-domain simultaneous tone interrogation for faster, sweep-free Brillouin distributed sensing”, 21st Inter. Conference of Optical Fiber Sensors, Proc. Of SPIE, 7753 (2011)

A. Voskoboinik, O.F. Yilmaz, A.E. Willner and M. Tur, “Sweep-free distributed Brillouin sensing using multiple pump and probe tones”, ECOC, Geneva, Switzerland, September 2011.

S. Damzen, V. Vlad, V. Babin and A. Mocofanescu, Stimulated Brillouin Scattering, Fundamentals and Applications (Institute of Physics Publishing, 2003), Chap. 1.

Y. Peled, A. Motil, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers”, Optical Fiber Sensor conference, OFS21, Ottawa, Canada, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

BGS reconstruction using the newly proposed sweep-free concept accomplished in a single measurement using multiple (N) pump and probe tones. Here the pump spacing is 100MHz, while the additional incremental spacing of the probe tones is δ ν Probe =3MHz .

Fig. 2
Fig. 2

Sequential pump launching. For N multiple tones, the pump waveform comprises a sequence of T–wide, N sub-pulses, each riding on a different frequency tone. As described in Sec. 3, the figure describes the RF waveform, which is then upconverted to an optical compound pulse. (a) Sub-pulse amplitude vs. time; (b) Sub-pulse frequency vs. time.(c) A spectrogram of the compound optical pulse used for sequential pumping. The laser frequency is located at the center of the horizontal optical frequency axis

Fig. 3
Fig. 3

Experimental setups: (a) As used in [9]; and (b) The improved version. MZM: Mach-Zehnder EO modulator; EDFA: Erbium-doped fiber amplifier; PC: polarization controller; SC: Polarization scrambler; ISO: optical isolator; DET – detector; FBG: fiber Bragg grating; RF AMP: radio-frequency amplifier; MW AMP: microwave frequency amplifier; AWG: arbitrary waveform generator; RTAS: real-time acquisition system; OSA: optical spectrum analyser; FUT: fiber-under-test.

Fig. 4
Fig. 4

(a) Spectrogram of the Brillouin return from an essentially uniform 20m-long fiber, showing the time evolution of each of the 20 optical tones used. The width of each pump sub-pulse was 50ns and the center of the tones (i.e., the frequency of the microwave source in Fig. 3) was chosen to coincide with the fiber BFS. (b) Reconstruction of the BGS using 20 frequency tones with 5-m resolution with no stretching applied to the fiber. The distance axis is obtained from the temporal axis of using: Position = Group-velocity x Time/2

Fig. 5
Fig. 5

(a) Reconstruction of the BGS of a 2-km FUT, comprising two 1km fiber segments with different BFS, spliced together at the position 1000m. 30 frequency tones, spanning 90MHz, were used with a sub-pulse width of T = 500ns, resulting in frequency and spatial resolutions of 3MHz and 50m, respectively. The zero frequency is 10877MHz (b) Results of classical BOTDA also with 3MHz sweeping step. (c) Reconstruction of the BGS using 20 frequency tones with 5-m resolution with the central 4-m of the fiber being stretched

Metrics