Abstract

We propose that the optical OFDM technique using all optical discrete Fourier transform (DFT) has potential as a viable alternative for upgrading long-haul optical transmission systems towards 100-Gb/s. We demonstrate transmission of 35-Gb/s (7 x 5 Gb/s NRZ-OOK) all-optical OFDM signal over ~2000-km dispersion-managed span without using tunable dispersion compensation and time gating. We achieve bit error ratio of 1.2x10−3 (7x10−3) for transmission over 1980-km (2310-km) all-EDFA amplified span consisting of standard single mode fiber (SSMF) and dispersion compensating fiber (DCF). We also study the nonlinear penalty impacting the all-optical OFDM transmission and discuss potential method for its mitigation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2010).
  2. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
    [CrossRef]
  3. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC2002, ThD1 (2002).
  4. A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 2007 33rd European Conference and Exhibition of ECOC 2007 Optical Communication—Post-Deadline Papers (2008), paper PDS 1.7.
  5. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
    [CrossRef] [PubMed]
  6. K. Takiguchi, T. Kitoh, A. Mori, M. Ogima, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler-based optical DFT circuit,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper PD1.4
  7. I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
    [CrossRef] [PubMed]
  8. I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).
  9. S. Bigo, W. Idler, J.-C. Antona, G. Charlet, C. Simonneau, M. Gorleir, M. Molina, S. Borne, C. de Barros, P. Sillard, P. Tran, R. Dischler, W. Poehlmann, P. Nouchi, and Y. Frignac, “Transmission of 125 WDM channels at 42.7 Gbit/s (5 Tbits/s capacity) over 12x100 km of TeraLight ultra fiber,” in 27th European Conference on Optical Communication, 2001. ECOC '01 (2001), Vol. 6, postdeadline paper PD.M.1.1.
  10. B. Zhu, L. E. Nelson, L. Leng, S. Stulz, S. Knudsen, and D.Peckham,”1.6 Tb/s (40 x 42.7 Gb/s) transmission over 2000km of fiber with 100-km dispersion-managed spans,” in 27th European Conference on Optical Communication, 2001. ECOC '01 (2001), postdeadline paper PD. M. 1.8.
  11. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, “Experimental test of dense wavelength-division multiplexing using novel, periodic-group-delay-complemented dispersion compensation and dispersion-managed solitons,” Opt. Lett. 28(21), 2043–2045 (2003).
    [CrossRef] [PubMed]
  12. R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OML7.

2011 (1)

2010 (1)

2008 (1)

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

2007 (1)

2003 (1)

Ben Ezra, S.

Buhl, L.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Cabot, S.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Cappuzzo, M.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Chandrasekhar, S.

Chen, Y. F.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Dinu, M.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Dutta, N.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Freude, W.

Giles, C. R.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Gomez, L. T.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Grant, A.

Hillerkuss, D.

Ip, E.

Jaques, J.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Kahn, J. M.

Kang, I.

Leuthold, J.

Li, J.

Liu, X.

Marculescu, A.

Mollenauer, L. F.

Narkiss, N.

Patel, S. S.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Piccirilli, A.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Rasras, M.

I. Kang, M. Rasras, X. Liu, S. Chandrasekhar, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, and J. Jaques, “All-optical OFDM transmission of 7 x 5-Gb/s data over 84-km standard single-mode fiber without dispersion compensation and time gating using a photonic-integrated optical DFT device,” Opt. Express 19(10), 9111–9117 (2011).
[CrossRef] [PubMed]

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Sanjoh, H.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC2002, ThD1 (2002).

Sigurdsson, G.

Teschke, M.

Wei, X.

Winter, M.

Wong-Foy, A.

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

Worms, K.

Xie, C.

Yamada, E.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC2002, ThD1 (2002).

Yoshikuni, Y.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC2002, ThD1 (2002).

IEEE Photon. Technol. Lett. (1)

I. Kang, M. Rasras, M. Dinu, M. Cappuzzo, L. T. Gomez, Y. F. Chen, L. Buhl, S. Cabot, A. Wong-Foy, S. S. Patel, C. R. Giles, N. Dutta, J. Jaques, and A. Piccirilli, ” All-optical byte recognition for 40-Gb/s phase-shift-keyed transmission using a planar-lightwave-circuit passive correlator,” IEEE Photon. Technol. Lett. 20, 1024–1026 (2008).

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Other (7)

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic, 2010).

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficency up to 1bit/s/Hz,” OFC2002, ThD1 (2002).

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30 x 100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” in 2007 33rd European Conference and Exhibition of ECOC 2007 Optical Communication—Post-Deadline Papers (2008), paper PDS 1.7.

S. Bigo, W. Idler, J.-C. Antona, G. Charlet, C. Simonneau, M. Gorleir, M. Molina, S. Borne, C. de Barros, P. Sillard, P. Tran, R. Dischler, W. Poehlmann, P. Nouchi, and Y. Frignac, “Transmission of 125 WDM channels at 42.7 Gbit/s (5 Tbits/s capacity) over 12x100 km of TeraLight ultra fiber,” in 27th European Conference on Optical Communication, 2001. ECOC '01 (2001), Vol. 6, postdeadline paper PD.M.1.1.

B. Zhu, L. E. Nelson, L. Leng, S. Stulz, S. Knudsen, and D.Peckham,”1.6 Tb/s (40 x 42.7 Gb/s) transmission over 2000km of fiber with 100-km dispersion-managed spans,” in 27th European Conference on Optical Communication, 2001. ECOC '01 (2001), postdeadline paper PD. M. 1.8.

K. Takiguchi, T. Kitoh, A. Mori, M. Ogima, and H. Takahashi, “Integrated-optic OFDM demultiplexer using slab star coupler-based optical DFT circuit,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper PD1.4

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H.-S. Tsai, R. Malendevich, M. Missey, K.-T. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OML7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1
Figure 1

Experimental set up for AO-OFDM transmission. (inset: schematic of AO-DFT circuit).

Fig. 2
Fig. 2

(a) Bit error ratio of subcarrier Ch.4 after 1320-km transmission for different signal launch power. (b) An eye diagram of Ch.7 after 1320-km (BER = 4x10−6). (c) An error-free eye diagram of Ch.7 for back-to-back transmission.

Fig. 3
Fig. 3

(a) BER (solid) of Ch. 4 subcarrier vs. transmission distance and corresponding uncompensated dispersion. Delivered OSNR of the OFDM signal is in dashed curve. (b) BERs of all subcarriers after 1980-km transmission (solid squares) and 2310-km transmission (hollow circles).

Fig. 4
Fig. 4

(a) BER of subcarrier channel 4 vs. distance with (circle) and without (square) −514 ps/nm pre-compensation. (b) Accumulated dispersion for the case without (solid curve) and with (dashed curve) the-514 ps/nm pre-compensation.

Fig. 5
Fig. 5

(a) Eye diagram of Ch. 4 after 1320-km transmission with the pre-compensation and both even and odd channels NRZ-OOK modulated. (b) Same as (a) except that the odd channels are NRZ-BPSK modulated. (c) BER of Ch. 4 measured with the pre-compensation (pre-comp) and all-channels NRZ-OOK modulated (solid squares), BER measured with the pre-comp and odd-channels NRZ-BPSK modulated (hollow squares), BER measured without the pre-comp and all-channels NRZ-OOK modulated (solid circles), and BER measured without the pre-comp and odd-channels NRZ-BPSK modulated (hollow circles).

Metrics