Abstract

A novel electronic dispersion pre-compensation scheme for a directly modulated laser is described and experimentally demonstrated for transmission distances beyond 200 km using a low-cost laser packaged for 2.5-Gb/s while operated at 10.709-Gb/s. A single look-up-table (LUT) for the drive current is designed to mitigate the effects of fiber dispersion, the intrinsic nonlinear modulation response of the laser, and the laser package. Experimental results show that an 11-bit LUT can compensate the dispersion of 202 km of standard single mode fiber with a required optical-signal-to-noise-ratio of 18.61 dB at a bit error ratio of 3.8 × 10−3.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
    [CrossRef]
  2. B. Wedding, “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission,” Electron. Lett. 30(1), 58–59 (1994).
    [CrossRef]
  3. D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
    [CrossRef]
  4. J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical domain compensation of optical dispersion,” Proc. Optical Fiber Communications Conference, OThJ3 (2005).
  5. Y. Jiang, X. Tang, J. C. Cartledge, and K. Roberts, “Electronic pre-compensation of narrow optical filtering for OOK, DPSK and DQPSK modulation formats,” J. Lightwave Technol. 27(16), 3689–3698 (2009).
    [CrossRef]
  6. S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009).
    [CrossRef]
  7. A. S. Karar, M. Yañez, Y. Jiang, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic dispersion pre-compensation using a directly modulated laser at 10.7-Gb/s,” Proc. European Conference on Optical Communication, We.7.A.3 (2011).
  8. A. S. Karar, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic pre-compensation for a 10.7-Gb/s system employing a directly modulated laser,” J. Lightwave Technol. 29(13), 2069–2076 (2011).
    [CrossRef]
  9. J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
    [CrossRef]
  10. R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion,” Proc. Optical Fiber Communications Conference, OWB3 (2006).
  11. R. Waegemans, S. Herbst, L. Holbein, P. Watts, P. Bayvel, C. Fürst, and R. I. Killey, “10.7 Gb/s electronic predistortion transmitter using commercial FPGAs and D/A converters implementing real-time DSP for chromatic dispersion and SPM compensation,” Opt. Express 17(10), 8630–8640 (2009).
    [CrossRef] [PubMed]
  12. E. Forestieri, “Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering,” J. Lightwave Technol. 18(11), 1493–1503 (2000).
    [CrossRef]
  13. A. S. Karar, Y. Jiang, J. C. Cartledge, J. Harley, D. J. Krause, and K. Roberts, “Electronic precompensation of nonlinear distortion in a 10 Gb/s 4-ary ASK directly modulated laser,” Proc. European Conference on Optical Communication, P3.03 (2010).
  14. A. S. Karar, J. C. Cartledge, J. Harley and K. Roberts, “Reducing the complexity of electronic pre-compensation for the nonlinear distortions in a directly modulated laser,” Proc. Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPWA2 (2011).
  15. I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
    [CrossRef]
  16. J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).
    [CrossRef]
  17. P. J. Winzer and R.-J. Essiambre, “Electronic pre-distortion for advance modulation formats,” Proc. European Conference on Optical Communication, Tu 4.2.2 (2005).

2011 (1)

2009 (3)

2008 (1)

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

2005 (1)

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

2001 (1)

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

2000 (1)

1997 (1)

J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).
[CrossRef]

1994 (1)

B. Wedding, “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission,” Electron. Lett. 30(1), 58–59 (1994).
[CrossRef]

1986 (1)

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[CrossRef]

Bayvel, P.

Birbas, A. N.

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

Boskovic, A.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Bowers, J. E.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[CrossRef]

Bunge, C.-A.

S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009).
[CrossRef]

Cartledge, J. C.

Fan, Z.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Forestieri, E.

Fürst, C.

Gnauck, A. H.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[CrossRef]

Hallock, B.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Harley, J.

Hemenway, B. R.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[CrossRef]

Herbst, S.

Hesse, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Holbein, L.

Jiang, Y.

Johnson, B.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Karar, A. S.

Kikidis, J.

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

Killey, R. I.

Klonidis, D.

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

Liao, C.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Mahgerefteh, D.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Matsui, Y.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

McCallion, K.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Nakano, J.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Papagiannakis, I.

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

Petermann, K.

S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009).
[CrossRef]

Roberts, K.

Roudas, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Srinivasan, R. C.

J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).
[CrossRef]

Tang, X.

Tayebati, P.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Tomkos, I.

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Vodhanel, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

Waegemans, R.

Walker, D.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Warm, S.

S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009).
[CrossRef]

Watts, P.

Wedding, B.

B. Wedding, “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission,” Electron. Lett. 30(1), 58–59 (1994).
[CrossRef]

Wilt, D. P.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[CrossRef]

Wuth, T.

S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009).
[CrossRef]

Zheng, X.

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

Electron. Lett. (2)

B. Wedding, “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission,” Electron. Lett. 30(1), 58–59 (1994).
[CrossRef]

D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. Fan, K. McCallion, and P. Tayebati, “Error-free 250 km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm,” Electron. Lett. 41(9), 543–544 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Warm, C.-A. Bunge, T. Wuth, and K. Petermann, “Electronic dispersion precompensation with a 10-Gb/s directly modulated laser,” IEEE Photon. Technol. Lett. 21(15), 1090–1092 (2009).
[CrossRef]

I. Papagiannakis, D. Klonidis, A. N. Birbas, J. Kikidis, and I. Tomkos, “Performance improvement for low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s,” IEEE Photon. Technol. Lett. 20(23), 1983–1985 (2008).
[CrossRef]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-µm directly modulate signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13(7), 735–737 (2001).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (1)

Other (6)

P. J. Winzer and R.-J. Essiambre, “Electronic pre-distortion for advance modulation formats,” Proc. European Conference on Optical Communication, Tu 4.2.2 (2005).

A. S. Karar, M. Yañez, Y. Jiang, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic dispersion pre-compensation using a directly modulated laser at 10.7-Gb/s,” Proc. European Conference on Optical Communication, We.7.A.3 (2011).

J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, “Electrical domain compensation of optical dispersion,” Proc. Optical Fiber Communications Conference, OThJ3 (2005).

R. I. Killey, P. M. Watts, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion,” Proc. Optical Fiber Communications Conference, OWB3 (2006).

A. S. Karar, Y. Jiang, J. C. Cartledge, J. Harley, D. J. Krause, and K. Roberts, “Electronic precompensation of nonlinear distortion in a 10 Gb/s 4-ary ASK directly modulated laser,” Proc. European Conference on Optical Communication, P3.03 (2010).

A. S. Karar, J. C. Cartledge, J. Harley and K. Roberts, “Reducing the complexity of electronic pre-compensation for the nonlinear distortions in a directly modulated laser,” Proc. Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPWA2 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of electronic dispersion pre-compensating DML transmitter.

Fig. 2
Fig. 2

Example of LUT entries with m = 3 and n = 2.

Fig. 3
Fig. 3

Scheme for establishing and optimizing the power LUT. AWGN: additive white Gaussian noise; OBPF: optical band-pass filter; ELPF: electrical low pass filter; BER: bit error ratio.

Fig. 4
Fig. 4

Measured and simulated (dashed lines) IM response at 1.18 Ith and 3.55 Ith (inset back-to-back eye-diagram, Timebase = 30 ps/div).

Fig. 5
Fig. 5

Block-diagram summarizing the offline processing for EDC using a DML.

Fig. 6
Fig. 6

Experimental setup. DAC: digital-to-analog converter, DML: directly modulated laser, EDFA: erbium doped fiber amplifier, OBPF: optical band-pass filter, BBS: broadband source, VOA: variable optical attenuator, OSA: optical spectrum analyzer, CR: clock recovery and ELPF: electrical low-pass filter.

Fig. 7
Fig. 7

The dependence of the measured BER on the OSNR (0.1 nm noise bandwidth) for the back-to-back case, 152 km and 202 km transmission with an infinite-size and 11-bit current LUT. (FEC limit BER = 3.8 × 10−3 dashed line).

Fig. 8
Fig. 8

The eye-diagrams of the transmitted and received signal for the target distances of 152 km and 202 km when an infinite size current LUT is used. (Timebase for experimental results 30 ps/div, simulation results 93 ps/div).

Tables (2)

Tables Icon

Table 1 DML rate equation parameters

Tables Icon

Table 2 Measured performance of EDC for 10.709-Gb/s using a 2.5-Gb/s DML

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(t)= P(t) exp( j β c 2 [ 2Γε V η 0 hv t P(t')dt' +log[ P(t) ] ] )
I(t)=A d dt ( 1 P(t) dP(t) dt )+B( dP(t) dt )+CP(t)+D
A=( qV Γ v g a 0 )
B=( εqV[ τ e + τ p ( 1 β sp ) ] Γ v g a 0 τ e τ p + qV Γ )( 2Γ τ p V η 0 hv )
C=( εqV( 1 β sp ) Γ v g a 0 τ e τ p + qV Γ τ p )( 2Γ τ p V η 0 hv )
D=( N 0 + 1 Γ v g a 0 τ p )( qV τ e )

Metrics