Abstract

We experimentally demonstrate performance enhancements enabled by weighted digital back propagation method for 28 Gbaud PM-16QAM transmission systems, over a 250 km ultra-large area fibre, using only one back-propagation step for the entire link, enabling up to 3 dB improvement in power tolerance with respect to linear compensation only. We observe that this is roughly the same improvement that can be obtained with the conventional, computationally heavy, non-weighted digital back propagation compensation with one step per span. As a further benchmark, we analyze performance improvement as a function of number of steps, and show that the performance improvement saturates at approximately 20 steps per span, at which a 5 dB improvement in power tolerance is obtained with respect to linear compensation only. Furthermore, we show that coarse-step self-phase modulation compensation is inefficient in wavelength division multiplexed transmission.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  2. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  4. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [CrossRef]
  5. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol. 27(16), 3614–3622 (2009).
    [CrossRef]
  6. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phase-shift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
    [CrossRef]
  7. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [CrossRef]
  8. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  9. D. Rafique, J. Zhao, and A. D. Ellis, “Impact of dispersion map management on the performance of back-propagation for nonlinear WDM transmissions,” in 2010 15th OptoeElectronics and Communications Conference (OECC), (2010), pp. 760–761
  10. S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, T. Zhenning, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OThR6.
  11. X. Chongjin and R. J. Essiambre, “Electronic nonlinearity compensation in 112-Gb/s PDM-QPSK optical coherent transmission systems,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Mo.1.C.1.
  12. L. B. Du and A. J. Lowery, “Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems,” Opt. Express 18(16), 17075–17088 (2010).
    [CrossRef] [PubMed]
  13. L. Lei, T. Zhenning, D. Liang, Y. Weizhen, O. Shoichiro, T. Takahito, H. Takeshi, and C. R. Jens, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWW3.
  14. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011).
    [CrossRef] [PubMed]
  15. S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
    [CrossRef] [PubMed]
  16. J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
    [CrossRef]
  17. M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.
  18. B. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMK5.
  19. R.-J. Essiambre, P. J. Winzer, and D. F. Grosz, “Impact of DCF properties on system design,” Opt. Fiber Commun. Rep. 5, 425–495(2007).
  20. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
    [CrossRef]
  21. P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
    [CrossRef]

2011 (4)

D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011).
[CrossRef] [PubMed]

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

2010 (5)

2009 (1)

2008 (2)

2007 (2)

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

R.-J. Essiambre, P. J. Winzer, and D. F. Grosz, “Impact of DCF properties on system design,” Opt. Fiber Commun. Rep. 5, 425–495(2007).

2006 (1)

Alfiad, M. S.

Bayvel, P.

Behrens, C.

Bosco, G.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

Buhl, L. L.

Calabrò, S.

Carena, A.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

Chen, X.

Chugtai, M. N.

Cotter, D.

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

De Man, E.

de Waardt, H.

Doerr, C. R.

Du, L. B.

Duthel, T.

Ellis, A. D.

Essiambre, R.-J.

R.-J. Essiambre, P. J. Winzer, and D. F. Grosz, “Impact of DCF properties on system design,” Opt. Fiber Commun. Rep. 5, 425–495(2007).

Fischer, J. K.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Fludger, C. R. S.

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

Forzati, M.

Gavioli, G.

Geyer, J.

Gnauck, A. H.

Goldfarb, G.

Grosz, D. F.

R.-J. Essiambre, P. J. Winzer, and D. F. Grosz, “Impact of DCF properties on system design,” Opt. Fiber Commun. Rep. 5, 425–495(2007).

Hauske, F. N.

Hilt, J.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Ip, E.

Jansen, S. L.

Khoe, G.-D.

Killey, R. I.

Kim, I.

Krummrich, P. M.

Kuschnerov, M.

Lankl, B.

Lavery, D.

Li, G.

Li, X.

Lowery, A. J.

Ludwig, R.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Magarini, M.

Makovejs, S.

Mårtensson, J.

Mateo, E.

Millar, D. S.

Miot, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

Molle, L.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Mussolin, M.

Napoli, A.

Nölle, M.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Peckham, D. W.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Piyawanno, K.

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

Rafique, D.

Savory, S. J.

Schmidt, E.-D.

Schmidt-Langhorst, C.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Schubert, C.

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

Schulien, C.

Sohler, W.

Spinnler, B.

Suche, H.

van den Borne, D.

Winzer, P. J.

Wuth, T.

Yaman, F.

Zhao, J.

IEEE Photon. Technol. Lett. (3)

J. K. Fischer, L. Molle, M. Nölle, C. Schmidt-Langhorst, J. Hilt, R. Ludwig, D. W. Peckham, and C. Schubert, “8×448 Gb/s WDM transmission of 56 GBd PDM 16-QAM OTDM signals over 250 km ultra-large effective area fiber,” IEEE Photon. Technol. Lett. 23(4), 239–241 (2011).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23(1), 15–17 (2011).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (5)

Opt. Fiber Commun. Rep. (1)

R.-J. Essiambre, P. J. Winzer, and D. F. Grosz, “Impact of DCF properties on system design,” Opt. Fiber Commun. Rep. 5, 425–495(2007).

Other (6)

M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.

B. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OMK5.

L. Lei, T. Zhenning, D. Liang, Y. Weizhen, O. Shoichiro, T. Takahito, H. Takeshi, and C. R. Jens, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWW3.

D. Rafique, J. Zhao, and A. D. Ellis, “Impact of dispersion map management on the performance of back-propagation for nonlinear WDM transmissions,” in 2010 15th OptoeElectronics and Communications Conference (OECC), (2010), pp. 760–761

S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, T. Zhenning, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OThR6.

X. Chongjin and R. J. Essiambre, “Electronic nonlinearity compensation in 112-Gb/s PDM-QPSK optical coherent transmission systems,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Mo.1.C.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for 224 Gb/s PM-16QAM transmission system with 3 total spans.

Fig. 2
Fig. 2

(a) Q versus OSNR and, (b) versus launch power, for single-channel 28 Gbaud 16QAM transmission over 250 km ULAF with various digital compensation scenarios; different values of OSNR in the Fig. 2a were obtained by varying the launch power. Linear compensation (squares), weighted digital back-propagation (1 step per link, triangles), non-weighted digital back-propagation (3 steps per link, stars), non-weighted digital back-propagation (60 steps per link, circles).

Fig. 3
Fig. 3

Constellation diagrams with only (a) LC and, (b) W-DBP (1 step per link), at OSNR level of 35 dB (launch power of 9 dBm). Single channel transmission at 28 Gbaud.

Fig. 4
Fig. 4

Q versus steps per span (NW-DBP case). Single channel transmission at 28 Gbaud. OSNR level of 35 dB (launch power of 9 dBm)

Fig. 5
Fig. 5

Q versus launch power, for 8 channel 28 Gbaud transmission over 480 km SSMF transmission with LC (squares) and NW-DBP (3 steps per link).

Metrics