Abstract

Link design for optical communication systems requires accurate modeling of nonlinear propagation in fibers. This topic has been widely analyzed in last decades with partial successes in special conditions, but without a comprehensive solution. Since the introduction of coherent detection with electronic signal processing the scenario completely changed because this category of systems shows better performances in links without in-line dispersion management. This change to uncompensated transmission allowed to modify the approach in the study of nonlinear fiber propagation and in recent years a series of promising analytical models have been proposed. In this paper, we present an experimental validation over different fiber types of an analytical model for nonlinear propagation over uncompensated optical transmission links. Considering an ultra-dense WDM system, we transmitted ten 120-Gb/s PM-QPSK signals over a multi-span system probing different fiber types: SSMF, PSCF and NZDSF. A good matching was found in all cases showing the potential of the analytical model for accurate performance estimation that could lead to powerful tools for link design.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2007).
  2. D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
    [CrossRef]
  3. V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
    [CrossRef]
  4. M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the tolerance of 111-Gb/s POLMUX-RZ-DQPSK to nonlinear transmission effects,” J. Lightwave Technol. 29(2), 162–170 (2011).
    [CrossRef]
  5. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
    [CrossRef]
  6. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008).
    [CrossRef] [PubMed]
  7. B. Goebel, B. Fesl, L. D. Coelho, and N. Hanik, “On the effect of FWM in coherent optical OFDM systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA58.
  8. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express 18(18), 19039–19054 (2010).
    [CrossRef] [PubMed]
  9. H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett. 15(9), 1219–1221 (2003).
    [CrossRef]
  10. J. Tang, “A comparison study of the Shannon channel capacity of various nonlinear optical fibers,” J. Lightwave Technol. 24(5), 2070–2075 (2006).
    [CrossRef]
  11. P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forgheri, “A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links,” in 2011 13th International Conference on Transparent Optical Networks (ICTON) (2011), paper We.B1.3.
  12. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).
  13. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.B.2.
  14. G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM PM-QPSK transmission over uncompensated links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO7.
  15. E. Grellier and A. Bononi, “Quality parameter for coherent transmissions with Gaussian-distributed nonlinear noise,” Opt. Express 19(13), 12781–12788 (2011).
    [CrossRef] [PubMed]
  16. S. Benedetto and E. Biglieri, Principles of Digital Transmission: with Wireless Applications (Kluwer, New York, 1999).
  17. G. Bosco, R. Cigliutti, E. Torrengo, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Joint DGD, PDL and chromatic dispersion estimation in ultra-long-haul WDM transmission experiments with coherent receivers,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Th.10.A.2.

2011 (3)

2010 (1)

2008 (2)

M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, and V. Karagodsky, “Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links,” Opt. Express 16(20), 15777–15810 (2008).
[CrossRef] [PubMed]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

2006 (1)

2003 (1)

H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett. 15(9), 1219–1221 (2003).
[CrossRef]

1997 (1)

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[CrossRef]

Alfiad, M. S.

Bononi, A.

Bosco, G.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).

Carena, A.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).

Chen, X.

Cho, P.

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).

de Waardt, H.

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).

Grellier, E.

Hodzic, A.

H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett. 15(9), 1219–1221 (2003).
[CrossRef]

Karagodsky, V.

Khurgin, J.

Kuschnerov, M.

Louchet, H.

H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett. 15(9), 1219–1221 (2003).
[CrossRef]

Manyuk, C. R.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[CrossRef]

Marcuse, D.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[CrossRef]

Meiman, Y.

Nazarathy, M.

Noe, R.

Petermann, K.

H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett. 15(9), 1219–1221 (2003).
[CrossRef]

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).

Shieh, W.

Shpantzer, I.

Tang, J.

van den Borne, D.

Wai, P. K. A.

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[CrossRef]

Weidenfeld, R.

Wuth, T.

IEEE Photon. Technol. Lett. (3)

V. Curri, P. Poggiolini, A. Carena, and F. Forghieri, “Dispersion compensation and mitigation of nonlinear effects in 111-Gb/s WDM coherent PM-QPSK systems,” IEEE Photon. Technol. Lett. 20(17), 1473–1475 (2008).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).
[CrossRef]

H. Louchet, A. Hodzic, and K. Petermann, “Analytical model for the performance evaluation of DWDM transmission systems,” IEEE Photon. Technol. Lett. 15(9), 1219–1221 (2003).
[CrossRef]

J. Lightwave Technol. (4)

J. Tang, “A comparison study of the Shannon channel capacity of various nonlinear optical fibers,” J. Lightwave Technol. 24(5), 2070–2075 (2006).
[CrossRef]

M. S. Alfiad, D. van den Borne, T. Wuth, M. Kuschnerov, and H. de Waardt, “On the tolerance of 111-Gb/s POLMUX-RZ-DQPSK to nonlinear transmission effects,” J. Lightwave Technol. 29(2), 162–170 (2011).
[CrossRef]

D. Marcuse, C. R. Manyuk, and P. K. A. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).
[CrossRef]

A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-linear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. ((submitted to).

Opt. Express (3)

Other (7)

S. Benedetto and E. Biglieri, Principles of Digital Transmission: with Wireless Applications (Kluwer, New York, 1999).

G. Bosco, R. Cigliutti, E. Torrengo, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Joint DGD, PDL and chromatic dispersion estimation in ultra-long-haul WDM transmission experiments with coherent receivers,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper Th.10.A.2.

E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.B.2.

G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM PM-QPSK transmission over uncompensated links,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThO7.

G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2007).

B. Goebel, B. Fesl, L. D. Coelho, and N. Hanik, “On the effect of FWM in coherent optical OFDM systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA58.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, and F. Forgheri, “A simple and accurate model for non-linear propagation effects in uncompensated coherent transmission links,” in 2011 13th International Conference on Transparent Optical Networks (ICTON) (2011), paper We.B1.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set-up for the generation and transmission of ten 120 Gb/s PM-QPSK signals with 33 GHz spacing.

Fig. 2
Fig. 2

(a) Spectrum of Tx WDM signal with ten PM-QPSK channels at 33GHz spacing (0.06 nm resolution). (b) Equivalent noise figure of the dual stage EDFA vs. total power at the input of the 1st stage EDFA.

Fig. 3
Fig. 3

Back-to-back performance of the system: matching of experimental results with analytical and simulative predictions. In this plot, being a back-to-back measurements, OSNR is due to ASE only.

Fig. 4
Fig. 4

Multi-span transmission experiment: comparison between experimental (blue dots), analytical (solid blue line) and simulative (dashed red line) results. BER vs. launch power per channel for SSMF, PSCF and NZDSF. System length changes with fiber type: see labels in each plot.

Fig. 5
Fig. 5

Maximum reach measurements (blue dots) and analytical prediction (solid red line) for a target BER = 10−3: (a) SSMF, (b) PSCF and (c) NZDSF. Distances on the y-axis are presented in logarithmic scale.

Tables (2)

Tables Icon

Table 1 Parameters of the fibers used in the experiments

Tables Icon

Table 2 Fiber comparison through the “non-linear lever”

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

OSN R NL = P Tx,ch P ASE + P NLI
BER= 1 2 erfc( OSN R NL B n 2 R s )
BER= 1 2 erfc( kOSN R NL B n 2 R s ).
OSN R NL = P Tx,ch P ASE + P NLI + η XT P Tx,ch .

Metrics