Abstract

An RF-assisted 112 Gbit/s transmitter based on optical phase modulation is presented. The system uses two closely spaced sub-channels generated using radio frequency (RF) electronics. Numerical simulations as well as experiments over 824 km of installed fiber are used for evaluation. The analysis shows that performance almost as good as for a conventional Mach-Zehnder modulator can be obtained. Although a relatively high OSNR is required due to the large fraction of power residing in the optical carrier, very small penalty is observed for optimum power levels in the transmission link.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of Dual-Polarization QPSK for Optical Transport Systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
    [CrossRef]
  2. OIF, “100G Ultra Long Haul DWDM Framework Document”, June 2009, http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  4. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
    [CrossRef]
  5. M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM Transmission with Real-Time Signal Processing at the Transmitter,” in Proc. ECOC 2010, Paper We.8.C.4.
  6. B. E. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-Assisted Optical Dual-Carrier 112 Gbit/s Polarization- Multiplexed 16-QAM Transmitter,” in Proc. OFC/NFOEC 2010, Paper OMK5.
  7. B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
    [CrossRef]
  8. C. Rolland, “InGaAsP-based Mach-Zehnder modulators for high-speed transmission systems”, in Proc. OFC 1998, Paper ThH1.
  9. A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
    [CrossRef]
  10. P. O. Hedekvist, B. E. Olsson, and A. Wiberg, “Microwave harmonic frequency generation utilizing the properties of an optical phase Modulator,” J. Lightwave Technol. 22(3), 882–886 (2004).
    [CrossRef]

2011

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

2010

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

2009

2004

1986

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
[CrossRef]

Alfiad, M. S.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Alping, A.

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
[CrossRef]

Awadalla, A.

Buhl, L. L.

Coldren, L. A.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
[CrossRef]

de Waardt, H.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Djupsjöbacka, A.

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

Doerr, C. R.

Gnauck, A. H.

Hausken, T. R.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
[CrossRef]

Hedekvist, P. O.

Jansen, S. L.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Krause, D. J.

Kuschnerov, M.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Laperle, C.

Magarini, M.

Mårtensson, J.

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

Olsson, B. E.

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

P. O. Hedekvist, B. E. Olsson, and A. Wiberg, “Microwave harmonic frequency generation utilizing the properties of an optical phase Modulator,” J. Lightwave Technol. 22(3), 882–886 (2004).
[CrossRef]

O'Sullivan, M.

Rhodin, A.

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

Roberts, K.

Sun, H.

van den Borne, D.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Wiberg, A.

Winzer, P. J.

Wu, K.-T.

Wu, X. S.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
[CrossRef]

Wuth, T.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

Appl. Phys. Lett.

A. Alping, X. S. Wu, T. R. Hausken, and L. A. Coldren, “Highly efficient waveguide phase modulator for integrated optoelectronics,” Appl. Phys. Lett. 48(19), 1243–1245 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11 x 224-Gb/s POLMUX-RZ-16QAM Transmission Over 670 km of SSMF With 50-GHz Channel Spacing,” IEEE Photon. Technol. Lett. 22(15), 1150–1152 (2010).
[CrossRef]

B. E. Olsson, J. Mårtensson, A. Alping, A. Djupsjöbacka, and A. Rhodin, “112-Gb/s RF-Assisted Multicarrier DP-16-QAM Optical Transmission Over Field Deployed Fiber Link,” IEEE Photon. Technol. Lett. 23(19), 1367–1369 (2011).
[CrossRef]

J. Lightwave Technol.

Other

OIF, “100G Ultra Long Haul DWDM Framework Document”, June 2009, http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf

C. Rolland, “InGaAsP-based Mach-Zehnder modulators for high-speed transmission systems”, in Proc. OFC 1998, Paper ThH1.

M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM Transmission with Real-Time Signal Processing at the Transmitter,” in Proc. ECOC 2010, Paper We.8.C.4.

B. E. Olsson, J. Mårtensson, A. Kristiansson, and A. Alping, “RF-Assisted Optical Dual-Carrier 112 Gbit/s Polarization- Multiplexed 16-QAM Transmitter,” in Proc. OFC/NFOEC 2010, Paper OMK5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the 100G RF assisted test system with optical phase modulator. Two RF carriers are modulated with 7 Gbaud 16-QAM using electrical IQ-modulators with subsequent electro-optical conversion using a phase modulator. 112 Gbit/s data is obtained by using a polarization multiplexer emulator.

Fig. 2
Fig. 2

Optical spectrum from the transmitter. Green trace: single channel only; Pink trace: Dual channels high modulation depth; Yellow trace: Dual channels low modulation depth.

Fig. 3
Fig. 3

Experimental results: (a) 16-QAM constellations before and after the 824 km transmission link and (b) measured BER versus span launch power after 824 km with phase modulator (red) and conventional MZM (blue).

Fig. 4
Fig. 4

Simulation results: (a) Required OSNR for BER = 10−3 for phase modulator (blue) and conventional MZM (red) versus RMS amplitude of the driving signal, (b) BER versus launch power for MZM and phase modulator with different levels of carrier suppression in the OADM filter preceding the link.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E O e j ω O t e jmsin( ω C t) ,
E O J 0 ( m ) e j ω O t + E O J 1 ( m )( e j( ω O + ω C )t e j( ω O ω C )t )+ + E O J 2 ( m )( e j( ω O +2 ω C )t + e j( ω O 2 ω C )t )+...,
J 1 (m) J 2 (m) m 2 m 3 16 m 2 8 m 4 96 4 m ( 1 m 2 24 ).

Metrics