Abstract

A burst mode 112Gb/s DP-QPSK digital coherent optical receiver with parallel DSP suitable for implementation in a CMOS ASIC with a 218.75 MHz clock speed is presented. The receiver performance is validated in a five channel 50 GHz grid WDM burst switching experiment using a commercially available wavelength tunable laser as the local oscillator. A new equalizer initialization scheme that overcomes the degenerate convergence problem and ensures rapid convergence is introduced. We show that the performance of the tunable local oscillator is commensurate with burst mode coherent reception when differential decoding in employed and that required parallel DSP implementation does not seriously impair the polarization and frequency tracking performance of a digital coherent receiver under burst mode operation. We report a burst acquisition time of less than 200 ns.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express 18(25), 25855–25860 (2010).
    [CrossRef] [PubMed]
  2. M. C. Brain and P. Cochrane, “Wavelength-routed optical networks using coherent transmission,” IEEE International Conference on Communications, (1988)
  3. J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” Optical Fiber Communication Conference OFC, paper PDPB5 (2010).
  4. F. Vacondio, O. Rival, Y. Pointurier, C. Simonneau, L. Lorcy, J.-C. Antona, and S. Bigo, “Coherent Receiver Enabling Data Rate Adaptive Optical Packet Networks,” ECOC, Mo.2.A.4 (2011).
  5. R. Dischler, “Experimental Comparison of 32- and 64-QAM Constellation Shapes on a Coherent PDM Burst Mode Capable System,” ECOC, Mo.2.A.6 (2011).
  6. B. Puttnam, B. C. Thomsen, R. Muckstein, A. Bianciotto, and P. Bayvel, “Nanosecond tuning of a DS-DBR laser for dynamic optical networks,” CLEO Europe (2009).
  7. A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).
  8. X. Chongjin and S. Chandrasekhar, “Two-stage constant modulus algorithm equalizer for singularity free operation and optical performance monitoring in optical coherent receiver,” Optical Fiber Communication Conference (OFC), paper OMK3, (2010).
  9. R. Harris, D. Chabries, and F. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal Process. 34(2), 309–316 (1986).
    [CrossRef]
  10. E. Jacobsen and P. Kootsookos, “Fast, Accurate Frequency Estimators,” IEEE Signal Process. Mag. 24(3), 123–125 (2007).
    [CrossRef]
  11. R. Maher and B. C. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” ECOC, We.10.P1.45 (2011).

2010

2007

E. Jacobsen and P. Kootsookos, “Fast, Accurate Frequency Estimators,” IEEE Signal Process. Mag. 24(3), 123–125 (2007).
[CrossRef]

1996

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

1986

R. Harris, D. Chabries, and F. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal Process. 34(2), 309–316 (1986).
[CrossRef]

Barton, E.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Bishop, F.

R. Harris, D. Chabries, and F. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal Process. 34(2), 309–316 (1986).
[CrossRef]

Busico, G.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Carter, A. C.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Chabries, D.

R. Harris, D. Chabries, and F. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal Process. 34(2), 309–316 (1986).
[CrossRef]

Duck, J. P.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Harris, R.

R. Harris, D. Chabries, and F. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal Process. 34(2), 309–316 (1986).
[CrossRef]

Ionescu, M.

Jacobsen, E.

E. Jacobsen and P. Kootsookos, “Fast, Accurate Frequency Estimators,” IEEE Signal Process. Mag. 24(3), 123–125 (2007).
[CrossRef]

Kootsookos, P.

E. Jacobsen and P. Kootsookos, “Fast, Accurate Frequency Estimators,” IEEE Signal Process. Mag. 24(3), 123–125 (2007).
[CrossRef]

Lavery, D.

Makovejs, S.

Ponnampalam, L.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Reid, D. C. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Robbins, D. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Savory, S. J.

Torrengo, E.

Wale, M. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Ward, A. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Whitbread, N. D.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Williams, P. J.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

IEEE Signal Process. Mag.

E. Jacobsen and P. Kootsookos, “Fast, Accurate Frequency Estimators,” IEEE Signal Process. Mag. 24(3), 123–125 (2007).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process.

R. Harris, D. Chabries, and F. Bishop, “A variable step (VS) adaptive filter algorithm,” IEEE Trans. Acoust. Speech Signal Process. 34(2), 309–316 (1986).
[CrossRef]

J. Quantum. Electron.

A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. Quantum. Electron. 11, 149–156 (1996).

Opt. Express

Other

M. C. Brain and P. Cochrane, “Wavelength-routed optical networks using coherent transmission,” IEEE International Conference on Communications, (1988)

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” Optical Fiber Communication Conference OFC, paper PDPB5 (2010).

F. Vacondio, O. Rival, Y. Pointurier, C. Simonneau, L. Lorcy, J.-C. Antona, and S. Bigo, “Coherent Receiver Enabling Data Rate Adaptive Optical Packet Networks,” ECOC, Mo.2.A.4 (2011).

R. Dischler, “Experimental Comparison of 32- and 64-QAM Constellation Shapes on a Coherent PDM Burst Mode Capable System,” ECOC, Mo.2.A.6 (2011).

B. Puttnam, B. C. Thomsen, R. Muckstein, A. Bianciotto, and P. Bayvel, “Nanosecond tuning of a DS-DBR laser for dynamic optical networks,” CLEO Europe (2009).

X. Chongjin and S. Chandrasekhar, “Two-stage constant modulus algorithm equalizer for singularity free operation and optical performance monitoring in optical coherent receiver,” Optical Fiber Communication Conference (OFC), paper OMK3, (2010).

R. Maher and B. C. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” ECOC, We.10.P1.45 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fast tunable burst mode coherent receiver experimental setup.

Fig. 2
Fig. 2

Receiver DSP functions

Fig. 3
Fig. 3

Absolute value of the CMA error slope surface for an arbitrary input to the coherent receiver. The dashed line indicates the region over which the signal is rotated when determining the initial conditions for the equalizer.

Fig. 4
Fig. 4

Burst mode receiver performance for 5 consecutive bursts overlaid, in terms of (a) the estimated frequency offset, (b) the CMA error, (c) standard BER and (d) the differentially decoded BER. The left and right panels show the initial 250 ns and the entire burst, respectively.

Fig. 5
Fig. 5

BER performance as a function of received ONSR for the five 50 GHz spaced channels under burst switched operation. The BER is shown for both standard decoding (a) and differential decoding (b). Also shown is the theoretical maximum (solid black line)

Fig. 6
Fig. 6

Performance comparison between the fixed and CMA error slope based equalizer initialisation schemes. CMA error convergence and BER with fixed (a) and (c) and CMA error slope (b) and (d) based initialization, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H( θ,ϕ )=[ e jφ/2 cos( θ ) sin( θ ) sin( θ ) e jφ/2 cos( θ ) ]

Metrics