Abstract

We propose a high-reflectivity-resolution coherent optical frequency domain reflectometry (OFDR) with a novel scheme of delay shift averaging (DSAV) by using an optical frequency comb source and a tunable delay line to suppress the fading noise. We show theoretically and experimentally that the novel DSAV scheme is equivalent, in realizing a high reflectivity resolution, to our previously reported frequency shift averaging (FSAV) of the same number of teeth of the optical frequency comb [1], but does not need the expensive narrow-pass-band tunable optical filter required in the previous scheme. Furthermore, by using this new method in combination with FSAV, better reflectivity-resolution is obtained compared to using only conventional FSAV with a single-wavelength laser source.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode intergrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
    [CrossRef]
  2. K. Huang and G. M. Carter, “Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser,” IEEE Photon. Technol. Lett. 6(12), 1466–1468 (1994).
    [CrossRef]
  3. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
    [CrossRef]
  4. J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
    [CrossRef]
  5. C. Jihong Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005).
    [CrossRef]
  6. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
    [CrossRef]
  7. Y. Koshikiya, X. Fan, F. Ito, Z. He, and K. Hotate, “Fading-noise suppressed cm-level resolution reflectometry over 10-km range with phase noise and chromatic dispersion compensation,” in 36th European Conference and Exhibition on Optical Communication (Turin, 2010),Tu.3.F2.
  8. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [CrossRef] [PubMed]
  9. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27(19), 4297–4305 (2009).
    [CrossRef]

2009

2007

2005

C. Jihong Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005).
[CrossRef]

1997

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[CrossRef]

1994

K. Huang and G. M. Carter, “Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser,” IEEE Photon. Technol. Lett. 6(12), 1466–1468 (1994).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[CrossRef]

1993

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode intergrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

1992

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[CrossRef]

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode intergrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

Carter, G. M.

K. Huang and G. M. Carter, “Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser,” IEEE Photon. Technol. Lett. 6(12), 1466–1468 (1994).
[CrossRef]

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[CrossRef]

Gisin, N.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[CrossRef]

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode intergrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[CrossRef]

Huang, K.

K. Huang and G. M. Carter, “Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser,” IEEE Photon. Technol. Lett. 6(12), 1466–1468 (1994).
[CrossRef]

Izutsu, M.

Jiang, S.

C. Jihong Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005).
[CrossRef]

Jihong Geng, C.

C. Jihong Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005).
[CrossRef]

Kawanishi, T.

Komukai, T.

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[CrossRef]

Mussi, G.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[CrossRef]

Passy, R.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[CrossRef]

Sakamoto, T.

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[CrossRef]

Spiegelberg, C.

C. Jihong Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005).
[CrossRef]

Suzuki, K.

Takada, A.

von der Weid, J. P.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[CrossRef]

Yamamoto, T.

IEEE Photon. Technol. Lett.

K. Huang and G. M. Carter, “Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser,” IEEE Photon. Technol. Lett. 6(12), 1466–1468 (1994).
[CrossRef]

C. Jihong Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17(9), 1827–1829 (2005).
[CrossRef]

J. Lightwave Technol.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[CrossRef]

R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12(9), 1622–1630 (1994).
[CrossRef]

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol. 15(7), 1131–1141 (1997).
[CrossRef]

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode intergrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[CrossRef]

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27(19), 4297–4305 (2009).
[CrossRef]

Opt. Lett.

Other

Y. Koshikiya, X. Fan, F. Ito, Z. He, and K. Hotate, “Fading-noise suppressed cm-level resolution reflectometry over 10-km range with phase noise and chromatic dispersion compensation,” in 36th European Conference and Exhibition on Optical Communication (Turin, 2010),Tu.3.F2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical frequency domain reflectometry (OFDR) using optical frequency comb and tunable delay line. OFC, optical frequency comb; SSBM, single sideband modulator; FUT, fiber under test; TDL, tunable delay line; BPD, balanced photo detector with polarization diversity; PC, personal computer.

Fig. 2
Fig. 2

Configuration of optical frequency comb source. PS, phase shifter; PM, phase modulator; IM, intensity modulator.

Fig. 3
Fig. 3

Spectrum of generated optical frequency comb with 13 teeth at the flat part of the envelope.

Fig. 4
Fig. 4

Measured reflection profiles of 500-m SMF and an open physical contact (FC/PC) connector, (a) without averaging, and (b) with 13-time DSAV.

Fig. 5
Fig. 5

Measured reflection profiles of 500-m SMF and an open physical contact (FC/PC) connector, (a) with only 10-time FSAV, and (b) with 13-time DSAV combining with 10-time FSAV.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δz= c 2 n eff ΔF ,
i d (t) E s (τ)cos(2πfτ),
f= f 0 +γt,
E( f b )= 1 T T/2 +T/2 i d (t) e j2π f b t dt = E s (τ) e j2π f 0 τ sinc( π f b T ) ,
E(τ)= τδτ τ+δτ E s (τ) e j2π f 0 τ dτa(τ) e j2π f 0 τ ,
I= | E(τ) | 2 .
E n = a n e j2π( f 0 +(n1)Δf)τ ,
I= | E 1 + E 2 ++ E N | 2 = n=1 N | E n | 2 +[ p N q>p N a p a q * exp{j2π(pq)Δfτ} +C.C. ],
I A =M n=1 N | E n | 2 +[ m=1 M p=1 N q>p N E p E q * exp{j2π(qp)Δf(τ+(m1)Δτ)} +C.C. ] = M n=1 N | E n | 2 Part I + [ p=1 N q>p N E p E q * exp{j2π(qp)Δfτ} 1exp{j2π(qp)ΔfMΔτ} 1exp{j2π(qp)ΔfΔτ} +C.C. ] Part II .

Metrics