Abstract

We demonstrate how loss-optimised, gain-saturated SOA-REAM based reflective modulators can reduce the burst to burst power variations due to differential access loss in the upstream path in carrier distributed passive optical networks by 18dB compared to fixed linear gain modulators. We also show that the loss optimised device has a high tolerance to input power variations and can operate in deep saturation with minimal patterning penalties. Finally, we demonstrate that an optimised device can operate across the C-Band and also over a transmission distance of 80km.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Design and Demonstration of REAM-Based WDM-PONs With Remote Amplification and Channel Fault Monitoring

Shu-Chuan Lin, San-Liang Lee, Cheng-Kuang Liu, Chun-Liang Yang, Sun-Chien Ko, Ty-Wang Liaw, and Gerd Keiser
J. Opt. Commun. Netw. 4(4) 336-343 (2012)

REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang
Opt. Express 20(19) 21089-21100 (2012)

Saturated collision amplifier reach extender for XGPON1 and TDM/DWDM PON

Tuomo von Lerber, Ari Tervonen, Fabienne Saliou, Quang Trung Le, Philippe Chanclou, Rui Xia, Marco Mattila, Werner Weiershausen, Seppo Honkanen, and Franko Küppers
Opt. Express 19(26) B645-B652 (2011)

References

  • View by:
  • |
  • |
  • |

  1. ITU-T G987.2, “Ten gigabit - capable passive optical networks: Physical dependent layer specifications,” Jan. 2010.
  2. ITU-T G987.2, “Ten gigabit - capable passive optical networks: Service requirements,” Jan, 2010.
  3. IEEE P802.3av, “10Gb/s Ethernet Passive Optical Networks,” 2009.
  4. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, and S.-H. Yang, “Long-reach passive optical networks,” J. Lightwave Technol. 27(3), 273–291 (2009).
    [Crossref]
  5. ITU-T G.984.6, “Gigabit-capable passive optical networks (GPON) Reach extension,” Mar. 2008.
  6. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long reach PON for next generation optical access,” J. Lightwave Technol. 24(7no. 7pp), 2827–2834 (2006).
    [Crossref]
  7. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review [Invited],” J. Opt. Netw. 4(11), 737–758 (2005).
    [Crossref]
  8. E. K. MacHale, et al., “Extended-Reach PON employing 10Gb/s Integrated Reflective EAM-SOA,” presented at the European Conf. Optical communication (ECOC), Brussels, Belgium, 2008, Paper Th.2.F.1.
  9. C. Antony et al., “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124 km field-installed fibres,” Optical fiber conference, San Diego, CA, Mar. 2010, Postdeadline paper PDPD8.
  10. P. Ossieur, C. Antony, A. M. Clarke, A. Naughton, H.-G. Krimmel, Y. Chang, C. Ford, A. Borghesani, D. G. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “A 135km, 8192-Split, Carrier Distributed DWDM-TDMA PON with 2x32x10Gb/s Capacity,” J. Lightwave Technol. 29(4Issue 4), 463–474 (2011).
    [Crossref]
  11. R. J. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19(12), 889–991 (1994).
    [Crossref] [PubMed]

2011 (1)

2009 (1)

2006 (1)

2005 (1)

1994 (1)

Antony, C.

Appathurai, S.

Banerjee, A.

Borghesani, A.

Chang, Y.

Clarke, A. M.

Clarke, F.

Davey, R. P.

Davies, D. A. O.

Ford, C.

Grossman, D. B.

Harmon, B.

Kelly, A. E.

Kim, K.

Kramer, G.

Krimmel, H.-G.

Lealman, I.

Manning, R. J.

Maxwell, G.

Moodie, D. G.

Mukherjee, B.

Naughton, A.

Nesset, D.

Ossieur, P.

Park, Y.

Payne, D. B.

Poustie, A.

Rafel, A.

Rasztovits-Wiech, M.

Rogers, D.

Smith, D. W.

Song, H.

Talli, G.

Townsend, P. D.

Wyatt, R.

Yang, S.

Yang, S.-H.

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Opt. Lett. (1)

Other (6)

E. K. MacHale, et al., “Extended-Reach PON employing 10Gb/s Integrated Reflective EAM-SOA,” presented at the European Conf. Optical communication (ECOC), Brussels, Belgium, 2008, Paper Th.2.F.1.

C. Antony et al., “Demonstration of a carrier distributed, 8192-split hybrid DWDM-TDMA PON over 124 km field-installed fibres,” Optical fiber conference, San Diego, CA, Mar. 2010, Postdeadline paper PDPD8.

ITU-T G.984.6, “Gigabit-capable passive optical networks (GPON) Reach extension,” Mar. 2008.

ITU-T G987.2, “Ten gigabit - capable passive optical networks: Physical dependent layer specifications,” Jan. 2010.

ITU-T G987.2, “Ten gigabit - capable passive optical networks: Service requirements,” Jan, 2010.

IEEE P802.3av, “10Gb/s Ethernet Passive Optical Networks,” 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Carrier-distributed hybrid DWDM-TDMA PON. Downstream not shown for clarity (US: Upstream, AWG: Arrayed-Waveguide Grating).

Fig. 2
Fig. 2

Experimental set up. PPG: Pulse pattern generator, APD: Avalanche photodiode, PC: Polarisation controller

Fig. 3
Fig. 3

(a)-(e): Pin vs. Pout and eye diagrams for LINT values of 3dB to 15dB in 3dB steps. (f): Pin vs. Pout on same scale

Fig. 4
Fig. 4

Back-to-back power penalties vs. LINT

Fig. 5
Fig. 5

(a) Transmission penalty vs. Pin, (b) Penalty vs. Pin

Fig. 6
Fig. 6

Dynamic range for loud/soft signals at LE vs. Differential loss

Metrics