Abstract

We demonstrate a monolithically integrated dual-quadrature coherent receiver with greater than 30 nm widely-tunable SG-DBR local oscillator, signal input SOAs, a 90° optical hybrid and four 10 GHz photodetectors. With 20 Gb/s NRZ-QPSK, we demonstrate a required OSNR of 10 dB for a BER of 10−3 at four different wavelengths.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express 13(19), 7527–7534 (2005).
    [CrossRef] [PubMed]
  2. A. Leven, N. Kaneda, U. Koch, and Y. Chen, “Coherent receivers for practical optical communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OThK4
  3. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-PDPB1
  4. C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y. Chen, “Monolithic silicon coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-PDPB2
  5. R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OML7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OML7
  6. J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700–707 (2001).
    [CrossRef]
  7. J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).
  8. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [CrossRef]
  9. S. Nakagawa, G. A. Fish, A. Dahl, P. C. Koh, C. Schow, M. Mack, L. Wang, and R. Yu, “Phase noise of widely-tunable SG-DBR laser,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper ThF2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-ThF2
  10. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
    [CrossRef]

2006

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

2005

2001

2000

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

1989

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Barton, J. S.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Coldren, L. A.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

DenBaars, S. P.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Dietrich, E.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Dummer, M.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Han, Y.

Heidrich, H.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Hoffman, D.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Joyner, C. H.

Langenhorst, R.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Leuthold, J.

Li, G.

Raring, J. W.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Skogen, E. J.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Sysak, M. N.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Tauke-Pedretti, A.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Wenke, G.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[CrossRef]

J. Lightwave Technol.

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700–707 (2001).
[CrossRef]

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90° hybrid on LiNbO3,” J. Lightwave Technol. 7(5), 794–798 (1989).
[CrossRef]

Opt. Express

Proc. SPIE

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” Proc. SPIE 6126, 612601 (2006).

Other

S. Nakagawa, G. A. Fish, A. Dahl, P. C. Koh, C. Schow, M. Mack, L. Wang, and R. Yu, “Phase noise of widely-tunable SG-DBR laser,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper ThF2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2003-ThF2

A. Leven, N. Kaneda, U. Koch, and Y. Chen, “Coherent receivers for practical optical communication Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThK4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OThK4

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multi-wavelength coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-PDPB1

C. R. Doerr, P. J. Winzer, S. Chandrasekhar, M. Rasras, M. P. Earnshaw, J. S. Weiner, D. M. Gill, and Y. Chen, “Monolithic silicon coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-PDPB2

R. Nagarajan, D. Lambert, M. Kato, V. Lal, G. Goldfarb, J. Rahn, M. Kuntz, J. Pleumeekers, A. Dentai, H. Tsai, R. Malendevich, M. Missey, K. Wu, H. Sun, J. McNicol, J. Tang, J. Zhang, T. Butrie, A. Nilsson, M. Reffle, F. Kish, and D. Welch, “10 Channel, 100Gbit/s per channel, dual polarization, coherent QPSK, monolithic InP receiver photonic integrated circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OML7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OML7

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Device layout (a) and photograph of the receiver PIC (b). The PIC size is 0.6 mm x 4.9 mm.

Fig. 2
Fig. 2

Device cross section.

Fig. 3
Fig. 3

(a) SG-DBR wavelength (nm) vs. bias currents of front and back mirrors showing quasi-continuous tuning range of over 30 nm. Photodetector normalized frequency response (b) of all four photodetectors.

Fig. 4
Fig. 4

Single tunable MMI bias pad configuration (a) and power imbalance tuning (b). 90° optical hybrid untuned and tuned power imbalance (c). With tuning the power imbalance is eliminated for the tested wavelength range of 1510 nm to 1630 nm.

Fig. 5
Fig. 5

Net Responsivity from fiber to a single photodetector, including input coupling loss, preamplifier gain, 90° optical hybrid loss, and photodetector imperfections. The 3-dB bandwidth is 50 nm.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

BER vs. OSNR (a) and sample constellation at 20 dB OSNR (b). The required OSNR for BER of 10−3 is 10 dB.

Metrics