Abstract

We devised a dual-carrier IQ modulator consisting of a novel complementary frequency shifter (CFS) and two IQ modulators. The CFS generates two optical subcarriers from a single light source and outputs them from separate ports without using any optical demultiplexing filters. We fabricated the modulator in a hybrid configuration of silica planar lightwave circuits and a LiNbO3 phase-modulator array. Frequency-spacing-tunable operation of the CFS was demonstrated. With the modulator, we successfully generated a 100-Gb/s/pol dual-carrier OFDM-QPSK signal.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Multi-channel multi-carrier generation using multi-wavelength frequency shifting recirculating loop

Xinying Li, Jianjun Yu, Ze Dong, Junwen Zhang, Yufeng Shao, and Nan Chi
Opt. Express 20(20) 21833-21839 (2012)

Single-carrier 1-Tb/s PDM-16QAM transmission using high-speed InP MUX-DACs and an integrated OTDM modulator

Hiroshi Yamazaki, Akihide Sano, Munehiko Nagatani, and Yutaka Miyamoto
Opt. Express 23(10) 12866-12873 (2015)

Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication

Junwen Zhang, Nan Chi, Jianjun Yu, Yufeng Shao, Jiangbo Zhu, Bo Huang, and Li Tao
Opt. Express 19(14) 12891-12902 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135 × 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km using SNR Maximized Second-order DRA in Extended L-band,” in Proc. OFC/NFOEC2009, PDPB5 (2009).
  2. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier No-guard-interval Coherent OFDM Superchannel over 7200-km of Ultra-large-area Fiber,” in Proc. ECOC2009, PD 2.6 (2009).
  3. D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370x294-Gb/s) PDM-128QAM-OFDM Transmission over 3x55-km SSMF using Pilot-based Phase Noise Mitigation,” in Proc. OFC/NFOEC2011, PDPB5 (2011).
  4. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
    [Crossref]
  5. W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2010).
  6. H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s Optical OFDM Transmission over 80 km in 50-GHz Frequency Grid,” in Proc. ECOC2010, Tu.3.C.1 (2010).
  7. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express 15(6), 2981–2986 (2007).
    [Crossref] [PubMed]
  8. T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
    [Crossref]
  9. N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, L. L. Buhl, and D. Ahn, “InP-based comb generator for optical OFDM,” in Proc. OFC/NFOEC2011, PDPC8 (2011)
  10. H. Yamazaki, T. Yamada, T. Goh, and S. Mino, “Multilevel Optical Modulator with PLC and LiNbO3 Hybrid Integrated Circuit, ” in Proc. OFC/NFOEC2011, OWV1 (2011)
  11. H. Yamazaki, T. Saida, T. Goh, A. Mori, and S. Mino, “Dual-carrier IQ Modulator Using a Complementary Frequency Shifter,” in Proc. ECOC2011, Mo.1.LeSalve.5 (2011)
  12. H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).
  13. M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEE J. Quantum Electron. 17(11), 2225–2227 (1981).
    [Crossref]

2010 (1)

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).

2009 (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

2007 (1)

2004 (1)

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[Crossref]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Bull, J. D.

Ellis, A. D.

Garcia Gunning, F. C.

Goh, T.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).

Healy, T.

Izutsu, M.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[Crossref]

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Jinno, M.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[Crossref]

Kozicki, B.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Matsuoka, S.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Mino, S.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).

Mori, A.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).

Sakamoto, T.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[Crossref]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Shinada, S.

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[Crossref]

Sone, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

Takara, H.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Tsukishima, Y.

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

Yamazaki, H.

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).

IEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[Crossref]

IEEE Commun. Mag. (1)

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path Network: Architecture, Benefits, and Enabling Technologies,” IEEE Commun. Mag. 47(11), 66–73 (2009).
[Crossref]

IEICE Electron. Express (1)

T. Kawanishi, T. Sakamoto, S. Shinada, and M. Izutsu, “Optical frequency comb generator using optical fiber loops with single-sideband modulation,” IEICE Electron. Express 1(8), 217–221 (2004).
[Crossref]

Opt. Express (1)

Other (9)

N. Dupuis, C. R. Doerr, L. Zhang, L. Chen, N. J. Sauer, L. L. Buhl, and D. Ahn, “InP-based comb generator for optical OFDM,” in Proc. OFC/NFOEC2011, PDPC8 (2011)

H. Yamazaki, T. Yamada, T. Goh, and S. Mino, “Multilevel Optical Modulator with PLC and LiNbO3 Hybrid Integrated Circuit, ” in Proc. OFC/NFOEC2011, OWV1 (2011)

H. Yamazaki, T. Saida, T. Goh, A. Mori, and S. Mino, “Dual-carrier IQ Modulator Using a Complementary Frequency Shifter,” in Proc. ECOC2011, Mo.1.LeSalve.5 (2011)

H. Yamazaki, T. Goh, A. Mori, and S. Mino, “Modulation-level-selectable Optical Modulator with a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,” in Proc. ECOC2010, We.8 E (2010).

W. Shieh and I. Djordjevic, OFDM for Optical Communications (Academic Press, 2010).

H. Takahashi, K. Takeshima, I. Morita, and H. Tanaka, “400-Gbit/s Optical OFDM Transmission over 80 km in 50-GHz Frequency Grid,” in Proc. ECOC2010, Tu.3.C.1 (2010).

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, “13.5-Tb/s (135 × 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km using SNR Maximized Second-order DRA in Extended L-band,” in Proc. OFC/NFOEC2009, PDPB5 (2009).

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier No-guard-interval Coherent OFDM Superchannel over 7200-km of Ultra-large-area Fiber,” in Proc. ECOC2009, PD 2.6 (2009).

D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370x294-Gb/s) PDM-128QAM-OFDM Transmission over 3x55-km SSMF using Pilot-based Phase Noise Mitigation,” in Proc. OFC/NFOEC2011, PDPB5 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the CFS.

Fig. 2
Fig. 2

Configuration of the dual-carrier IQ modulator.

Fig. 3
Fig. 3

Optical signal spectra of the outputs from the CFS.

Fig. 4
Fig. 4

Driving-frequency, fs, dependence of (a) the peak-frequency shift for each output port and (b) the intensity ratio between the two outputs measured at each peak frequency.

Fig. 5
Fig. 5

E/O frequency response.

Fig. 6
Fig. 6

Back-to-back setup.

Fig. 7
Fig. 7

Optical signal spectra.

Fig. 8
Fig. 8

Optical eye diagrams measured (a) before the MZDI and (b) after the gate.

Fig. 9
Fig. 9

(a) BER vs OSNR curves. (b) Constellations measured without adding ASE noise.

Metrics