Abstract

A cost effective clock recovery scheme simultaneously providing signal performance monitoring is proposed for high speed electrical time domain multiplexing (ETDM) transmission systems to release the bandwidth requirement on the involved electrical devices. In the scheme, we first convert the clock frequency down in the optical domain using electroptic modulation, and then extract the clock with a phase locked loop (PLL) after photo-detection. All the devices involved are operated at frequencies lower than half of the symbol rate. Furthermore, we use a quadrature phase detector in the PLL to create a monitor signal which characterizes the transmitted signal performance in terms of optical-to-noise ratio (OSNR) and accumulated chromatic dispersion (ACD). This scheme is applied to a 112-Gbit/s none-return-to-zero (NRZ) differential quadrature phase shift keying (DQPSK) system. Experimental results show that the clock can be recovered in a dispersion range of −40 to 40 ps/nm, and the evaluated OSNR, over a range of 18~36 dB, has a deviation smaller than 1 dB compared to the measured one based on the optical spectrum method. The bit error ratio remains below 10−9 for 12 hours in the back-to-back case and 2 hours after transmission over 100-km standard single mode fiber (SSMF).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Camera, “100GbE Optical Transport, Appropriate Modulation Formats, and Impact on Deployed Transport Networks,” in Proc. OFC/NFOEC’10, NME3 (San Diego, CA, U.S.A. 2010).
  2. D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel Optical Fast Fourier Transform Scheme Enabling Real-Time OFDM Processing at 392 Gbit/s and Beyond,” in Proc. OFC/NFOEC’10, OWW3 (San Diego, CA, U.S.A. 2010).
  3. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km Transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a Single I/Q Modulator,” in ECOC 2010, PD2.2 (Torino, Italy, 2010).
  4. T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Moller, “DA and AD Converters in SiGe Technology: Speed and Resolution for Ultra High Data Rate Applications,” Proc. ECOC’10, Th.10.A.6 (Torino, Italy, 2010).
  5. M. G. Taylor, “Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  6. N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB,” in Proc.OFC/NFOEC 2005, OFP3.
  7. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in OFC’07, PDP19 (Anaheim, California, U.S.A. 2007).
  8. K. Schuh and B. Junginger, E. lach, G. Veith, “1 Tbit/s (10x107 Gbit/s ETDM) Serial NRZ Transmission over 480km SSMF,” in OFC’07, PDP23 (Anaheim, California, U.S.A. 2007).
  9. D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
    [CrossRef]
  10. P. C. Noutsios, “In-service Measurements of Polarization Fluctuations on Field-installed OC-192 DWDM Systems,” International Symposium on Signals, Systems and Electronics, 2007. ISSSE '07, pp.323–326.
  11. A. Walter, G.S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in OFC 2002 pp. 332, WU5 (2002).
  12. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [CrossRef]
  13. S. Sygletos, I. Tomkos, and J. Leuthold, “Technological Challenges on the road toward transparent networking,” J. Opt. Netw. 7(4), 321–350 (2008).
    [CrossRef]
  14. T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
    [CrossRef]
  15. T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
    [CrossRef]
  16. D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
    [CrossRef]
  17. K. Wang, J. Li, A. Djupsjobacka, M. Chacinski, U. Westergren, S. Popov, G. Jacobsen, V. Hurm, R. E. Makon, R. Driad, H. Walcher, J. Rosenzweig, A. G. Steffan, G. G. Mekonnen, and H.-G. Bach, “100 Gb/s Complete ETDM System Based on Monolithically Integrated Transmitter and Receiver Modules,” in Proc. OFC/NFOEC’10, NME1 (San Diego, CA, U.S.A. 2010).
  18. S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett. 39(8), 673–674 (2003).
    [CrossRef]
  19. T. F. Carruthers and J. W. Lou, “80 to 10Gbit/s clock recovery using phase detection with Mach-Zehnder modulator,” Electron. Lett. 37(14), 906–907 (2001).
    [CrossRef]
  20. H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous Clock Recovery and Dispersion, OSNR Monitoring for 112Gbit/s NRZ-DQPSK Using Frequency Down-Conversion Electro-Optical Phase-Locked Loop,” in Proc. ECOC2011, Tu.6.A.5 (Geneva, Switzerland, 2011).
  21. F. Gardener, Phaselock Techniques, 3rd ed. (John Wiley & Sons, Inc., 2005), pp. 13–18, 184–188.
  22. J.-K. Kang and D.-H. Kim, “A CMOS clock and data recovery with two-XOR phase-frequency detector circuit,” The 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, Vol. 4, pp. 266–289 (2001).
  23. C. Ware, L. K. Oxenløwe, F. Gómez Agis, H. C. Mulvad, M. Galili, S. Kurimura, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop,” Opt. Express 16(7), 5007–5012 (2008).
    [CrossRef] [PubMed]
  24. E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
    [CrossRef]
  25. J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
    [CrossRef]
  26. H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
    [CrossRef]
  27. R. M. Jopson, L. E. Nelson, H. Kogelnik, and G. J. Foschini, “Probability densities of depolarization associated with second-order PMD in optical fibers,” in Proc. Opt. Fiber Communications Conf., OFC’01, ThA-4 (Anaheim, CA, U.S.A. 2001).
  28. A. J. Zilkie, C. Lin, and P. G. Wigley, “Effect of Neighboring Channels in OSNR Monitoring With Fractional-Bit-Delay Interferometers,” in Proc. OFC’09, JThA12 (San Diego, CA, U.S.A. 2009).

2009 (1)

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

2008 (2)

2007 (1)

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

2006 (1)

D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
[CrossRef]

2004 (2)

M. G. Taylor, “Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

2003 (1)

S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett. 39(8), 673–674 (2003).
[CrossRef]

2002 (1)

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

2001 (3)

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
[CrossRef]

T. F. Carruthers and J. W. Lou, “80 to 10Gbit/s clock recovery using phase detection with Mach-Zehnder modulator,” Electron. Lett. 37(14), 906–907 (2001).
[CrossRef]

1999 (1)

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

Awad, E. S.

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

Bach, R.

Bao, X.

D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
[CrossRef]

Blumenthal, D. J.

Carruthers, T. F.

T. F. Carruthers and J. W. Lou, “80 to 10Gbit/s clock recovery using phase detection with Mach-Zehnder modulator,” Electron. Lett. 37(14), 906–907 (2001).
[CrossRef]

Chen, L.

D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
[CrossRef]

Cho, P. S.

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

Chung, Y. C.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Clausen, A. T.

Einstein, D.

Erasme, D.

Galili, M.

Goldhar, J.

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

Gómez Agis, F.

Honkanen, S.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

Ichikawa, J.

Ishii, M.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Jeppesen, P.

Jung, D. K.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Kawanishi, S.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Kilper, D. C.

Kim, C. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Kim, K. W.

D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
[CrossRef]

Ko, J.

D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
[CrossRef]

Küppers, F.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

Kurimura, S.

Landolsi, T.

Lee, J. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

Leuthold, J.

Lim, S.-K.

D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
[CrossRef]

Lou, J. W.

T. F. Carruthers and J. W. Lou, “80 to 10Gbit/s clock recovery using phase detection with Mach-Zehnder modulator,” Electron. Lett. 37(14), 906–907 (2001).
[CrossRef]

Lu, P.

D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
[CrossRef]

Ludvigsen, H.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

Moulton, N.

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

Mulvad, H. C.

Nakajima, H.

Ogawa, I.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Ohara, T.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Okamoto, M.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Ostar, L.

Oxenløwe, L. K.

Paoletti, A.

S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett. 39(8), 673–674 (2003).
[CrossRef]

Preiss, M.

Richardson, C.

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

Shake, I.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Suzuki, H.

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

Sygletos, S.

Takachio, N.

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

Takara, H.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Taylor, M. G.

M. G. Taylor, “Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Tervonen, A.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

Tomkos, I.

Vehovc, S.

S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett. 39(8), 673–674 (2003).
[CrossRef]

Vidmar, M.

S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett. 39(8), 673–674 (2003).
[CrossRef]

von Lerber, T.

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

Waddy, D. S.

D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
[CrossRef]

Ware, C.

Willner, A. E.

Woo, D. K.

D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
[CrossRef]

Yamada, T.

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

Electron. Lett. (3)

S. Vehovc, M. Vidmar, and A. Paoletti, “80Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop,” Electron. Lett. 39(8), 673–674 (2003).
[CrossRef]

T. F. Carruthers and J. W. Lou, “80 to 10Gbit/s clock recovery using phase detection with Mach-Zehnder modulator,” Electron. Lett. 37(14), 906–907 (2001).
[CrossRef]

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Ohara, H. Takara, I. Shake, T. Yamada, M. Ishii, I. Ogawa, M. Okamoto, and S. Kawanishi, “Highly Stable 160-Gb/s OTDM Technologies Based on Integrated MUX/DEMUX and Drift-Free PLL-Type Clock Recovery,” IEEE J. Sel. Top. Quantum Electron. 13(1), 40–48 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

D. S. Waddy, P. Lu, L. Chen, and X. Bao, “Fast state of polarization changes in aerial fiber under different climatic conditions,” IEEE Photon. Technol. Lett. 13(9), 1035–1037 (2001).
[CrossRef]

M. G. Taylor, “Coherent Detection Method Using DSP for Demodulation of Signal and Subsequent Equalization of Propagation Impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett. 14(9), 1378–1380 (2002).
[CrossRef]

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization-nulling method,” IEEE Photon. Technol. Lett. 13(1), 88–90 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Microw. Opt. Technol. Lett. (1)

D. K. Woo, K. W. Kim, S.-K. Lim, and J. Ko, “Implementation of a Low-Cost Phase-Locked Loop Clock-Recovery Module for 40-Gb/s Optical Receivers,” Microw. Opt. Technol. Lett. 48(2), 312–315 (2006).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, and F. Küppers, “Optical clock recovery methods: Review (Invited),” Opt. Fiber Technol. 15(4), 363–372 (2009).
[CrossRef]

Other (15)

R. M. Jopson, L. E. Nelson, H. Kogelnik, and G. J. Foschini, “Probability densities of depolarization associated with second-order PMD in optical fibers,” in Proc. Opt. Fiber Communications Conf., OFC’01, ThA-4 (Anaheim, CA, U.S.A. 2001).

A. J. Zilkie, C. Lin, and P. G. Wigley, “Effect of Neighboring Channels in OSNR Monitoring With Fractional-Bit-Delay Interferometers,” in Proc. OFC’09, JThA12 (San Diego, CA, U.S.A. 2009).

K. Wang, J. Li, A. Djupsjobacka, M. Chacinski, U. Westergren, S. Popov, G. Jacobsen, V. Hurm, R. E. Makon, R. Driad, H. Walcher, J. Rosenzweig, A. G. Steffan, G. G. Mekonnen, and H.-G. Bach, “100 Gb/s Complete ETDM System Based on Monolithically Integrated Transmitter and Receiver Modules,” in Proc. OFC/NFOEC’10, NME1 (San Diego, CA, U.S.A. 2010).

P. C. Noutsios, “In-service Measurements of Polarization Fluctuations on Field-installed OC-192 DWDM Systems,” International Symposium on Signals, Systems and Electronics, 2007. ISSSE '07, pp.323–326.

A. Walter, G.S. Schaefer, “Chromatic dispersion variations in ultra-long-haul transmission systems arising from seasonal soil temperature variations,” in OFC 2002 pp. 332, WU5 (2002).

H. Wen, L. Cheng, X. Zheng, H. Zhang, Y. Guo, and B. Zhou, “Simultaneous Clock Recovery and Dispersion, OSNR Monitoring for 112Gbit/s NRZ-DQPSK Using Frequency Down-Conversion Electro-Optical Phase-Locked Loop,” in Proc. ECOC2011, Tu.6.A.5 (Geneva, Switzerland, 2011).

F. Gardener, Phaselock Techniques, 3rd ed. (John Wiley & Sons, Inc., 2005), pp. 13–18, 184–188.

J.-K. Kang and D.-H. Kim, “A CMOS clock and data recovery with two-XOR phase-frequency detector circuit,” The 2001 IEEE International Symposium on Circuits and Systems, ISCAS 2001, Vol. 4, pp. 266–289 (2001).

N. E. Jolley, H. Kee, P. Pickard, J. Tang, and K. Cordina, “Generation and propagation of a 1550 nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fibre using a directly modulated DFB,” in Proc.OFC/NFOEC 2005, OFP3.

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in OFC’07, PDP19 (Anaheim, California, U.S.A. 2007).

K. Schuh and B. Junginger, E. lach, G. Veith, “1 Tbit/s (10x107 Gbit/s ETDM) Serial NRZ Transmission over 480km SSMF,” in OFC’07, PDP23 (Anaheim, California, U.S.A. 2007).

M. Camera, “100GbE Optical Transport, Appropriate Modulation Formats, and Impact on Deployed Transport Networks,” in Proc. OFC/NFOEC’10, NME3 (San Diego, CA, U.S.A. 2010).

D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel Optical Fast Fourier Transform Scheme Enabling Real-Time OFDM Processing at 392 Gbit/s and Beyond,” in Proc. OFC/NFOEC’10, OWW3 (San Diego, CA, U.S.A. 2010).

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km Transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a Single I/Q Modulator,” in ECOC 2010, PD2.2 (Torino, Italy, 2010).

T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, and M. Moller, “DA and AD Converters in SiGe Technology: Speed and Resolution for Ultra High Data Rate Applications,” Proc. ECOC’10, Th.10.A.6 (Torino, Italy, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of proposed clock recovery based on optical domain down-conversion. Amp: amplifier, RF: radio frequency, VCO: voltage control oscillator.

Fig. 2
Fig. 2

Power spectrum of the photo-detected 40 Gbaud NRZ-DQPSK signal after frequency down-conversion MZM. With the driving signal (a) switched off (b) switched on.

Fig. 3
Fig. 3

VCO harmonics spectrum to meet the clock recovery scheme requirement.

Fig. 4
Fig. 4

Experimental setup of a 112-Gbit/s NRZ-DQPSK system. BPF: band pass filter, CLK: clock, CR: clock recovery, DCM: dispersion compensation module, DCF: dispersion compensation fiber, DI: delay interferometer, OA: optical amplifier, OSA: optical spectrum analyzer, OTF: optical tunable filter, PD: photodiode, PMON: performance monitoring, PPG: pulse pattern generator, SMF: single mode fiber, TLS: tunable laser source, VOA: variable optical attenuator.

Fig. 5
Fig. 5

Spectra and waveforms of recovered clock. Span: 100 KHz.

Fig. 6
Fig. 6

Monitor signal in voltage versus signal optical power input to CR in microwatt.

Fig. 7
Fig. 7

Relation between monitor voltage and accumulated dispersion of NRZ-DQPSK, insets: eye diagrams of the direct and differential demodulated detection.

Fig. 8
Fig. 8

Simulated relative intensity of clock tone of 56-Gbaud NRZ-DQPSK after dispersive transmission. (a) Dispersion coefficient of 10 ps/nm/km, dispersion slope of 0.058 ps/nm2/km (black square) and 10 ps/nm2/km (red dot); (b) Dispersion coefficient of 0 ps/nm/km, dispersion slope of 10 ps/nm2/km (black square) and 50 ps/nm2/km (red dot).

Fig. 9
Fig. 9

Total optical power and monitor signal versus OSNR at fixed signal power.

Fig. 10
Fig. 10

Estimated OSNRs comparison between our method and the optical spectrum analysis method at 3 different signal power levels.

Fig. 11
Fig. 11

BER versus OSNR in back-to-back case at different accumulated chromatic dispersions.

Fig. 12
Fig. 12

BER versus received power at different OSNRs in the case of completed dispersion compensation.

Fig. 13
Fig. 13

Comparison of BER versus OSNR before and after transmission.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P out ( t )= P in ( t ) [ 1cos( mπsinp2π f 0 t+ϕ ) ] /2
S out ( f )= 1 2 { S in ( f )+cosϕ n= J 2n ( mπ ) S in ( f+2np f 0 ) +jsinϕ n= sgn( n ) J 2n+1 ( mπ ) S in [ f+(2n+1)p f 0 ] }
V d = K d V LO V sig cosθ K d V LO V sig
f s Nn f VCO =m f VCO ,m<n M f VCO = f s / 2or f s
2 f 1 1.5f,3 f 1 2.5f,4 f 1 3.5f 2 f 2 2.5f,3 f 2 3.5f,4 f 2 4.5f
f 1 7 8 f, f 2 9 8 f, f 2 f 1 1 4 f
OSN R 0.1nm =γ ( P t k Vd 1 ) 1

Metrics