Abstract

We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As38Se62.With a core diameter as small as 1.13 µm, a record Kerr nonlinearity of 46 000 W–1km–1 is demonstrated with attenuation loss of 0.9 dB/m. Four-wave mixing is experimented by using a 1m-long chalcogenide fiber for 10 GHz and 42.7 GHz signals. Four-wave mixing efficiencies of –5.6 dB at 10 GHz and –17.5 dB at 42.7 GHz are obtained. We also observed higher orders of four-wave mixing for both repetition rates.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [CrossRef]
  2. J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
  4. M. R. E. Lamont, L. Fu, M. Rochette, D. J. Moss, and B. J. Eggleton, “2R optical regenerator in As2Se3 chalcogenide fiber characterized by a frequency-resolved optical gating analysis,” Appl. Opt. 45(30), 7904–7907 (2006).
    [CrossRef] [PubMed]
  5. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  6. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  7. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [CrossRef]
  8. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [CrossRef] [PubMed]
  9. L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
    [CrossRef]
  10. F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
    [CrossRef]
  11. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
    [CrossRef] [PubMed]
  12. D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
    [CrossRef]
  13. J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 µm,” Infrared Phys. 5(4), 195–204 (1965).
    [CrossRef]
  14. T. Miyashita and Y. Terunuma, “Optical transmission loss of As-S fiber in 1.0-55µm wavelength region,” Jpn. J. Appl. Phys. 21(Part 2, No. 2), L75–L76 (1982).
    [CrossRef]
  15. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [CrossRef]
  16. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
    [CrossRef]
  17. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
    [CrossRef]
  18. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
    [CrossRef] [PubMed]
  19. M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).
  21. S. Song, C. T. Allen, K. R. Demarest, and R. Hui, “Intensity-dependent phase-matching effects on four-wave miwing in optical fibers,” J. Lightwave Technol. 17(11), 2285–2290 (1999).
    [CrossRef]
  22. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
    [CrossRef]
  23. K. Lengle, A. Akrout, M. C. Silva, L. Bramerie, S. Combrie, P. Colman, J.-C. Simon, and A. D. Rossi, “10 GHz demonstration of four-wave-mixing in photonic crystal waveguides,” in Proc. ECOC (2010).
  24. M. Costa e Silva, A. Lagrost, L. Bramerie, M. Gay, P. Benard, M. Joindot, J. C. Simon, A. Shen, and G.-H. Duan, “Up to 427 GHz all optical frequency down-conversion clock recovery based on quantum-dash Fabry-Perot mode-locked laser,” J. Lightwave Technol. 29(4), 609–615 (2011).

2011 (3)

2010 (5)

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

2009 (2)

2008 (4)

D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
[CrossRef]

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

2006 (2)

J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).

M. R. E. Lamont, L. Fu, M. Rochette, D. J. Moss, and B. J. Eggleton, “2R optical regenerator in As2Se3 chalcogenide fiber characterized by a frequency-resolved optical gating analysis,” Appl. Opt. 45(30), 7904–7907 (2006).
[CrossRef] [PubMed]

2004 (1)

2001 (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

2000 (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

1999 (1)

1982 (1)

T. Miyashita and Y. Terunuma, “Optical transmission loss of As-S fiber in 1.0-55µm wavelength region,” Jpn. J. Appl. Phys. 21(Part 2, No. 2), L75–L76 (1982).
[CrossRef]

1965 (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 µm,” Infrared Phys. 5(4), 195–204 (1965).
[CrossRef]

Aggarwal, I. D.

Allen, C. T.

Benard, P.

Bramerie, L.

M. Costa e Silva, A. Lagrost, L. Bramerie, M. Gay, P. Benard, M. Joindot, J. C. Simon, A. Shen, and G.-H. Duan, “Up to 427 GHz all optical frequency down-conversion clock recovery based on quantum-dash Fabry-Perot mode-locked laser,” J. Lightwave Technol. 29(4), 609–615 (2011).

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

Brilland, L.

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Bulla, D. A. P.

Chanclou, P.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
[CrossRef]

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Chartier, T.

Choi, D.-Y.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[CrossRef]

Costa e Silva, M.

Coulombier, Q.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

Dekker, S. A.

Demarest, K. R.

Desevedavy, F.

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[CrossRef]

Duan, G.-H.

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

M. R. E. Lamont, L. Fu, M. Rochette, D. J. Moss, and B. J. Eggleton, “2R optical regenerator in As2Se3 chalcogenide fiber characterized by a frequency-resolved optical gating analysis,” Appl. Opt. 45(30), 7904–7907 (2006).
[CrossRef] [PubMed]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Fatome, J.

Finot, C.

Flore, C. M.

J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).

Fortier, C.

Fu, L.

Fu, L. B.

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

Gadret, G.

Galili, M.

Gay, M.

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Hodelin, J.

Houizot, P.

Hu, H.

Hudson, D. D.

Hui, R.

Iredale, T.

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

Jackson, S. D.

Joindot, M.

Judge, A. C.

Kibler, B.

Kosinski, S. G.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Kung, F.

J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).

Lagrost, A.

Lamont, M. R.

Lamont, M. R. E.

Le, S. D.

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

Lengle, K.

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

Lenz, G.

Li, E.

Liu, X.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

Madden, S.

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Madden, S. J.

Magi, E.

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

Magi, E. C.

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

Mägi, E. C.

Méchin, D.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[CrossRef] [PubMed]

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

Messaad, K.

Miyashita, T.

T. Miyashita and Y. Terunuma, “Optical transmission loss of As-S fiber in 1.0-55µm wavelength region,” Jpn. J. Appl. Phys. 21(Part 2, No. 2), L75–L76 (1982).
[CrossRef]

Monro, T. M.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Monteville, A.

Moss, D. J.

N’guyen, T. N.

Nguyen, D. M.

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

Nguyen, T. N.

Nguyen, V. Q.

J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).

Nielsen, S.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 µm,” Infrared Phys. 5(4), 195–204 (1965).
[CrossRef]

Orain, H.

Oxenløwe, L. K.

Pain, T.

Palushani, E.

Pelusi, M. D.

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

Pitois, S.

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[CrossRef]

Pureza, P.

J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).

Quetel, L.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
[CrossRef]

Renversez, G.

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Rochard, P.

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
[CrossRef]

Rochette, M.

Roelens, M. A. F.

Sanghera, J.

Sanghera, J. S.

Sangleboeuf, J.-C.

Savage, J. A.

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 µm,” Infrared Phys. 5(4), 195–204 (1965).
[CrossRef]

Schröder, J.

Shaw, L. B.

Shen, A.

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[CrossRef]

Simon, J. C.

Slusher, R. E.

Smektala, F.

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[CrossRef]

Song, S.

Ta'eed, V. G.

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

Terunuma, Y.

T. Miyashita and Y. Terunuma, “Optical transmission loss of As-S fiber in 1.0-55µm wavelength region,” Jpn. J. Appl. Phys. 21(Part 2, No. 2), L75–L76 (1982).
[CrossRef]

Thienpont, H.

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

Thual, M.

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
[CrossRef]

Traynor, N.

Troles, J.

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and nonlinear characterizations of chalcogenide photonic crystal fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

Trolès, J.

Van Erps, J.

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

Vo, T. D.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Windeler, R. S.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

Xu, J.

Yeom, D.-I.

Appl. Opt. (1)

Electron. Lett. (3)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

L. B. Fu, M. D. Pelusi, E. C. Magi, V. G. Ta'eed, and B. J. Eggleton, “Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre,” Electron. Lett. 44(1), 44–46 (2008).
[CrossRef]

F. Luan, J. Van Erps, M. D. Pelusi, E. Magi, T. Iredale, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640 Gbit/s data using dispersion-engineered chalcogenide photonic wire,” Electron. Lett. 46(3), 231–232 (2010).
[CrossRef]

Fiber Integr. Opt. (1)

M. Thual, P. Rochard, P. Chanclou, and L. Quetel, “Contribution to research on Micro-Lensed Fibers for Modes Coupling,” Fiber Integr. Opt. 27(6), 532–541 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13(1), 52–54 (2001).
[CrossRef]

D. M. Nguyen, S. D. Le, K. Lengle, D. Méchin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core Chalcogenide fiber,” IEEE Photon. Technol. Lett. 22(24), 1844–1846 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Infrared Phys. (1)

J. A. Savage and S. Nielsen, “Chalcogenide glasses transmitting in the infrared between 1 and 20 µm,” Infrared Phys. 5(4), 195–204 (1965).
[CrossRef]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. S. Sanghera, L. B. Shaw, C. M. Flore, P. Pureza, V. Q. Nguyen, F. Kung, and I. D. Aggarwal, “Nonlinear properties of chalcogenide glass fibers,” J. Optoelectron. Adv. Mater. 8(6), 2148–2155 (2006).

Jpn. J. Appl. Phys. (1)

T. Miyashita and Y. Terunuma, “Optical transmission loss of As-S fiber in 1.0-55µm wavelength region,” Jpn. J. Appl. Phys. 21(Part 2, No. 2), L75–L76 (1982).
[CrossRef]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (2)

K. Lengle, A. Akrout, M. C. Silva, L. Bramerie, S. Combrie, P. Colman, J.-C. Simon, and A. D. Rossi, “10 GHz demonstration of four-wave-mixing in photonic crystal waveguides,” in Proc. ECOC (2010).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Theoretical schematic diagram for four-wave mixing generation; (b) Simulated spectra of four-wave mixing for modulated pump ω1 and CW pump ω2.

Fig. 2
Fig. 2

Suspended-core chalcogenide fiber with mode adaptation ends. Where LF, LA, LTF: length of fiber, length of adaptation mode parts and length of taper parts, respectively; ϕC, ϕA: core diameters of fiber and adaptation mode parts, respectively.

Fig. 3
Fig. 3

Block diagram of pulse stream generation (a) at 10 GHz and (b) at 42.7 GHz; and (c) setup of FWM measurement at 10 GHz and 42.7 GHz.

Fig. 4
Fig. 4

Optical spectra at 10 GHz at the output of AsSe fiber (a) with appearance of the third-order FWM, (b) with various wavelengths of the CW pump, and (c) efficiency of the first-order FWM related to the wavelength detuning Δλ.

Fig. 5
Fig. 5

(a) Spectrum of combined CW signal and 42.7 GHz pump at the input of the AsSe fiber; (b) Spectrum at the output of the AsSe fiber with FWM signal up to second-order; and (c) efficiency of the first-order FWM with respect to the wavelength detuning Δλ.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 4 = 3 ε 0 4 χ xxxx (3) [ | E 4 | 2 E 4 +2( | E 1 | 2 + | E 2 | 2 + | E 3 | 2 ) E 4 +2 E 1 E 2 E 3 exp(i θ + )+ E 1 E 2 E 3 * exp(i θ )+... ]
θ + = ( k 1 + k 2 + k 3 k 4 )z ( ω 1 + ω 2 + ω 3 ω 4 )t,
θ  = ( k 1 + k 2 k 3 k 4 )z ( ω 1 + ω 2 ω 3 ω 4 )t,
ω 3 + ω 4 = ω 1 + ω 2
k 3 + k 4 = k 1 + k 2 ,
Δk = k 3 + k 4 k 1 k 2 = 0.

Metrics