Abstract

Saturated Collision Amplifier (SCA) is a novel amplification scheme that uses SOA saturation in order to maximize the output power and minimize the ASE noise and the polarization sensitivity. We demonstrate the SCA reach extension in a commercial single-wavelength XGPON1 prototype system where bidirectional optical budget of up to 50 dB is obtained. The traffic performances are compared between the SCA and the conventional SOA extender. The novel extension scheme is demonstrated also for two- and four-wavelength 10 Gbit/s unidirectional downstream configurations with 45 km and 100 km transmission distances with 58-dB maximum total optical budget for each wavelength.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
    [CrossRef]
  2. ITU-T G987.2, “10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification” (2010).
  3. P. Chanclou, J.-P. Lanquetin, S. Durel, F. Saliou, B. Landousies, N. Genay, and Z. Belfqih, “Investigation into optical technologies for access evolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWH1.
  4. Z. Belfqih, P. Chanclou, F. Saliou, N. Genay, and B. Landousies, “Enhanced optical budget system performance of an burst extended PON at 10.7Gbit/s over 60km of fibre,” in 34th European Conference on Optical Communication, 2008. ECOC'08, paper Th.2.F.4 (2008).
  5. ITU-T G984.6, “Gigabit-capable passive optical networks (GPON): Reach extension” (2008).
  6. N. Genay, T. Soret, P. Chanclou, B. Landousies, L. Guillo, and F. Saliou, “Evaluation of the Budget Extension of a GPON by EDFA Amplification,” in 9th International Conference on Transparent Optical Networks, 2007. ICTON '07, paper Mo.P.20 (2007).
  7. L. Spiekman, D. Piehler, P. Iannone, K. Reichmann, and L. Han-Hyub, “Semiconductor optical amplifier for FTTx,” in International Conference on Transparent Optical Networks, 2007. ICTON '07. 9th, Rome, Italy, Mo.D2.4 (2007).
  8. D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.
  9. F. Saliou, P. Chanclou, N. Genay, J. A. Lazaro, F. Bonada, A. Othmani, and Y. Zhou, “Single SOA to extend simultaneously the optical budget of coexisting GPON and 10G-PON,” in 36th European Conference on Optical Communication, 2010. ECOC '10, paper Tu.5.B.5 (2010).
  10. D. Nesset and P. Wright, “Raman extended GPON using 1240 nm semiconductor quantum-dot lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThW6.
  11. B. Zhu, “Entirely passive reach extended GPON using Raman amplification,” Opt. Express 18(22), 23428–23434 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23428 .
    [CrossRef] [PubMed]
  12. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in 35th European Conference on Optical Communication, 2009. ECOC '09, paper 10.5.5. (2009).
  13. A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, E. Parsons, H. Chaouch, A. Marculescu, J. Leuthold, and F. Kueppers, “Dual output SOA based amplifier for PON extenders,” in 36th European Conference on Optical Communication, 2010. ECOC '10, paper P6.18 (2010).
  14. H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
    [CrossRef]
  15. R. Maher, L. P. Barry, and P. M. Anandarajah, “Cost efficient directly modulated DPSK downstream transmitter and colourless upstream remodulation for full-duplex WDM-PONs,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA29.
  16. R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
    [CrossRef]
  17. W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
    [CrossRef]

2011 (2)

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

2010 (1)

2006 (1)

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

1990 (1)

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Bourgart, F.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Chan, C.-K.

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

Chaouch, H.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Davey, R.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Elrefaie, A.

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Gimlett, J.

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Honkanen, S.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Iqbal, M.

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Jia, W.

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

Kani, J.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Küppers, F.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Liu, Z.

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

Mattila, M.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

McCammon, K.

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

Parsons, E.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Tervonen, A.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Tse, K.-H.

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

Tsuji, S.

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Vodhanel, R.

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

von Lerber, T.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Wagner, R.

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Weiershausen, W.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Willner, A. E.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Xu, J.

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

Yang, J.-Y.

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Zhu, B.

IEEE Commun. Mag. (1)

R. Davey, J. Kani, F. Bourgart, and K. McCammon, “Options for future optical access networks,” IEEE Commun. Mag. 44(10), 50–56 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Jia, J. Xu, Z. Liu, K.-H. Tse, and C.-K. Chan, “Generation and transmission of 10-Gb/s RZ-DPSK signals using a directly modulated chirp-managed laser,” IEEE Photon. Technol. Lett. 23(3), 173–175 (2011).
[CrossRef]

J. Lightwave Technol. (1)

R. Vodhanel, A. Elrefaie, M. Iqbal, R. Wagner, J. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8(9), 1379–1386 (1990).
[CrossRef]

Opt. Commun. (1)

H. Chaouch, E. Parsons, A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, S. Honkanen, J.-Y. Yang, A. E. Willner, and F. Küppers, “All-optical processing of RZ-DPSK signals using counter-propagating pulses in a saturated SOA,” Opt. Commun. 284(10-11), 2576–2580 (2011).
[CrossRef]

Opt. Express (1)

Other (12)

R. Maher, L. P. Barry, and P. M. Anandarajah, “Cost efficient directly modulated DPSK downstream transmitter and colourless upstream remodulation for full-duplex WDM-PONs,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA29.

ITU-T G987.2, “10-Gigabit-capable passive optical networks (XG-PON): Physical media dependent (PMD) layer specification” (2010).

P. Chanclou, J.-P. Lanquetin, S. Durel, F. Saliou, B. Landousies, N. Genay, and Z. Belfqih, “Investigation into optical technologies for access evolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWH1.

Z. Belfqih, P. Chanclou, F. Saliou, N. Genay, and B. Landousies, “Enhanced optical budget system performance of an burst extended PON at 10.7Gbit/s over 60km of fibre,” in 34th European Conference on Optical Communication, 2008. ECOC'08, paper Th.2.F.4 (2008).

ITU-T G984.6, “Gigabit-capable passive optical networks (GPON): Reach extension” (2008).

N. Genay, T. Soret, P. Chanclou, B. Landousies, L. Guillo, and F. Saliou, “Evaluation of the Budget Extension of a GPON by EDFA Amplification,” in 9th International Conference on Transparent Optical Networks, 2007. ICTON '07, paper Mo.P.20 (2007).

L. Spiekman, D. Piehler, P. Iannone, K. Reichmann, and L. Han-Hyub, “Semiconductor optical amplifier for FTTx,” in International Conference on Transparent Optical Networks, 2007. ICTON '07. 9th, Rome, Italy, Mo.D2.4 (2007).

D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.

F. Saliou, P. Chanclou, N. Genay, J. A. Lazaro, F. Bonada, A. Othmani, and Y. Zhou, “Single SOA to extend simultaneously the optical budget of coexisting GPON and 10G-PON,” in 36th European Conference on Optical Communication, 2010. ECOC '10, paper Tu.5.B.5 (2010).

D. Nesset and P. Wright, “Raman extended GPON using 1240 nm semiconductor quantum-dot lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThW6.

H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in 35th European Conference on Optical Communication, 2009. ECOC '09, paper 10.5.5. (2009).

A. Tervonen, M. Mattila, W. Weiershausen, T. von Lerber, E. Parsons, H. Chaouch, A. Marculescu, J. Leuthold, and F. Kueppers, “Dual output SOA based amplifier for PON extenders,” in 36th European Conference on Optical Communication, 2010. ECOC '10, paper P6.18 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A schematic illustration of a) a PON; and b) an extended PON with a mid-span amplifier.

Fig. 2
Fig. 2

An SCA consist of a delay interferometer, a pair of circulators, and an SOA. It transforms DPSK input into OOK output.

Fig. 3
Fig. 3

Experimental setup of the extended XGPON1 prototype. The reach extender is based on separate up- and downstream SOAs.

Fig. 4
Fig. 4

Packet loss maps for varying feeder and access budgets. a) SOA used for downstream transmission; b) SOA used for the upstream transmission; c) combination of the up- and downstream results. Class N1 and N2 budget ranges are 14–29 dB and 16–31 dB, respectively.

Fig. 5
Fig. 5

Experimental Setup of XGPON1 equipped with the SCA reach extender.

Fig. 6
Fig. 6

a) ASK-to-DPSK transponder at the OLT; b) downstream packet loss map for varying feeder and access budgets while using the SCA extender; and c) combination of up- and downstream results.

Fig. 7
Fig. 7

Downstream configuration of a TDM/WDM PON using the SCA extender.

Fig. 8
Fig. 8

Measurement setup: Tx – 10-Gbit/s RZ DPSK transmitter, PRBS of 231−1; VOA - variable optical attenuator; SOA – semiconductor optical amplifier; Rx - receiver.

Fig. 9
Fig. 9

a) Bit-error-rate map of two-wavelength configuration; b) downstream BER curves of two- and four-wavelength configurations; and c) BER contour of 10−3 for two-and four-wavelength configurations.

Fig. 10
Fig. 10

a) SCA extender including the preamplifier and the DCF; b) BER contours of 10−3 for 100-km configuration; and c) BER curves at feeder budget of 28 dB for 100-km configuration.

Metrics