Abstract

We demonstrate a 93.8-Gb/s real-time optical OFDM transmitter with 1024-point IFFT using polarization-multiplexing and 4-QAM modulation. This is the highest IFFT size implemented for OFDM to our knowledge. The limited resources of FPGA make it challenging to place and route such a high size IFFT. The implementation penalty of the real time transmitter compared to the case where FPGAs are used as an arbitrary waveform generators increases up to 2 dB for BER of 7x10−4. An optical back-back measurement showed required OSNR of 26.5 dB for a BER of 10−3.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, “OFDM for adaptive ultra high-speed optical networks,” in Proc. OFC, (2010)
  2. S. Chandrasekhar and X. Liu, “Terabit superchannels for high spectral efficiency transmission,” in Proc. ECOC, (2010), http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWO1 .
  3. S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
    [CrossRef]
  4. S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
    [CrossRef]
  5. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “21.4 GS/s real-time DSP-based optical OFDM signal generation and transmission over 1600 km of uncompensated fibre,” in Proc. ECOC, (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5395708 .
  6. F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, and D. Efinger, “Realisation of a real-time 12.1 Gb/s optical OFDM transmitter and its application in a 109 Gb/s transmission system with coherent reception,” in Proc. ECOC, (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5395713 .
  7. R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
    [CrossRef]
  8. R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express 19(13), 12740–12749 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-13-12740 .
    [CrossRef] [PubMed]
  9. B. Inan, O. Karakaya, P. Kainzmaier, S. Adhikari, S. Calabro, V. A. J. M. Sleiffer, N. Hanik, and S. L. Jansen, “Realization of a 23.9 Gb/s real time optical-OFDM transmitter with a 1024 point IFFT,” in Proc. OFC (2011), http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OMS2 .
  10. B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. von Kirchbauer, N. Hanik, and S. L. Jansen, “Realization of a real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” in Proc. ECOC (2011).
  11. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, (Prentice Hall, 1999).
  12. S. C. Jeffrey Lee, F. Breyer, S. Randel, H. P. A. van den Boom, and A. M. J. Koonen, “High-speed transmission over multimode fiber using discrete multitone modulation [Invited],” J. Opt. Netw. 7(2), 183–196 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=JON-7-2-183 .
    [CrossRef]

2011 (2)

R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
[CrossRef]

R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100 Gbit/s,” Opt. Express 19(13), 12740–12749 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-13-12740 .
[CrossRef] [PubMed]

2010 (1)

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

2009 (1)

2008 (1)

Adhikari, S.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

Becker, J.

Ben-Ezra, S.

Breyer, F.

Charbonnier, B.

R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
[CrossRef]

Dreschmann, M.

Freude, W.

Giddings, R. P.

R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
[CrossRef]

Hillerkuss, D.

Huebner, M.

Hugues-Salas, E.

R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
[CrossRef]

Jansen, S. L.

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

S. L. Jansen, I. Morita, T. C. W. Schenk, and H. Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF,” J. Lightwave Technol. 27(3), 177–188 (2009).
[CrossRef]

Jeffrey Lee, S. C.

Koonen, A. M. J.

Koos, C.

Leuthold, J.

Meyer, J.

Morita, I.

Nebendahl, B.

Randel, S.

Schenk, T. C. W.

Schmogrow, R.

Tanaka, H.

Tang, J. M.

R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
[CrossRef]

van den Boom, H. P. A.

Winter, M.

IEEE Photon. Technol. Lett. (2)

S. Randel, S. Adhikari, and S. L. Jansen, “Analysis of RF-pilot-based phase noise compensation for coherent optical OFDM systems,” IEEE Photon. Technol. Lett. 22(17), 1288–1290 (2010).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, B. Charbonnier, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers,” IEEE Photon. Technol. Lett. 23(1), 51–53 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Netw. (1)

Opt. Express (1)

Other (7)

B. Inan, O. Karakaya, P. Kainzmaier, S. Adhikari, S. Calabro, V. A. J. M. Sleiffer, N. Hanik, and S. L. Jansen, “Realization of a 23.9 Gb/s real time optical-OFDM transmitter with a 1024 point IFFT,” in Proc. OFC (2011), http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OMS2 .

B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. von Kirchbauer, N. Hanik, and S. L. Jansen, “Realization of a real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT,” in Proc. ECOC (2011).

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, (Prentice Hall, 1999).

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “21.4 GS/s real-time DSP-based optical OFDM signal generation and transmission over 1600 km of uncompensated fibre,” in Proc. ECOC, (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5395708 .

F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, and D. Efinger, “Realisation of a real-time 12.1 Gb/s optical OFDM transmitter and its application in a 109 Gb/s transmission system with coherent reception,” in Proc. ECOC, (2009), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5395713 .

W. Shieh, “OFDM for adaptive ultra high-speed optical networks,” in Proc. OFC, (2010)

S. Chandrasekhar and X. Liu, “Terabit superchannels for high spectral efficiency transmission,” in Proc. ECOC, (2010), http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWO1 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup including real time transmitter with FPGA and DAC boards, optical setup and offline processing blocks.

Fig. 2
Fig. 2

Optical spectrum of the 93.8-Gb/s OFDM signal.

Fig. 3
Fig. 3

Constellation diagram of both polarizations at high OSNR.

Fig. 4
Fig. 4

BER performance as a function of the OSNR.

Fig. 5
Fig. 5

Es/N0 vs. modulated subcarrier (a) without and (b) with clock offset for electrical back-to-back DMT where 900 subcarriers are modulated.

Tables (1)

Tables Icon

Table 1 Some Recent Real Time Transmitter Work

Metrics