Abstract

A wide wavelength tunable quantum dot (QD) external cavity laser operating in the 1.31-μm waveband with a narrow line-width is successfully demonstrated. A high-density, high-quality InAs/InGaAs QD optical gain medium for the 1.31-μm waveband was obtained using a sandwiched sub-nano separator growth technique. A wide wavelength tunability of 1.265–1.321 μm and a narrow line-width of 210 kHz were successfully achieved using a compact and robust external cavity system constructed with multiple optical band-pass and etalon filters for active optical mode selection. The laser also achieved an error-free 10-Gb/s photonic data transmission over an 11.4-km-long holey fiber.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper PDP19.
  2. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsu, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPB7.
  3. N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C, 72350C–11 (2009).
    [CrossRef]
  4. N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
    [CrossRef] [PubMed]
  5. N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
    [CrossRef] [PubMed]
  6. H. Liu, C.-F. Lam, and C. Johnson, “Scaling Optical Interconnects in Datacenter Networks - Opportunities and Challenges for WDM,” in Proceedings of 18th IEEE Symposium on High Performance Interconnects (IEEE, 2010), pp. 113–116.
  7. A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).
  8. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [CrossRef]
  9. H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
    [CrossRef]
  10. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
    [CrossRef]
  11. Y. Tanaka, M. Ishida, Y. Maeda, T. Akiyama, T. Yamamoto, H. Song, M. Yamaguchi, Y. Nakata, K. Nishi, M. Sugawara, and Y. Arakawa, “High-Speed and Temperature-Insensitive Operation in 1.3-μm InAs/GaAs High-Density Quantum Dot Lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWJ1.
  12. A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
    [CrossRef]
  13. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  14. N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
    [CrossRef]
  15. N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
    [CrossRef]
  16. A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
    [CrossRef]
  17. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
    [CrossRef]
  18. M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
    [CrossRef]
  19. N. Yamamoto, Y. Yoshioka, K. Akahane, T. Kawanishi, H. Sotobayashi, and H. Takai, “100-GHz channel spacing and O-band quantum dot optical frequency comb generator with interference injection locking technique,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) 2011, paper CTuV7.
  20. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [CrossRef]
  21. K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with Aeff of 160 mm2 and loss of 0.175 dB/km and using large-Aeff holey fibers enabling transmission over 600 nm bandwidth,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OThR1.

2011 (2)

A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

2010 (2)

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

2009 (1)

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C, 72350C–11 (2009).
[CrossRef]

2008 (2)

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

2007 (2)

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

2005 (1)

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
[CrossRef]

2004 (1)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

2003 (1)

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

1995 (1)

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Akahane, K.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
[CrossRef]

Akiyama, T.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Alvarado, S. F.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Arakawa, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Bornholdt, C.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Bressel, U.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Ebe, H.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Eisele, C.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Ernsting, I.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Frith, R.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Fujioka, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

Gozu, S.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
[CrossRef]

Grote, N.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Gubenko, A.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Harrison, C. N.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Hatori, N.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Hopkinson, M.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Ishida, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Johnson, M. B.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Katouf, R.

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

Kawanishi, T.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Kobayashi, T.

A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).

Kovsh, A.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Krestnikov, I.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Liu, H. Y.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Livshits, D.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Livshtis, D.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Marti, U.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Martin, D.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Mikhrin, S.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Miyamoto, Y.

A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).

Morier-Genoud, F.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Mowbray, D. J.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Nakata, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Nevsky, A. Y.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Ohtani, N.

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
[CrossRef]

Okhapkin, M.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Okumura, S.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Omigawa, Y.

Otsubo, K.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Pfister, M.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Reinhart, F. K.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Sa-lemink, H. W. M.

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

Sano, A.

A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).

Schiller, S.

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Sellers, I. R.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Skolnick, M. S.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Sotobayashi, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C, 72350C–11 (2009).
[CrossRef]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

Steer, M. J.

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Sugawara, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

Takai, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

Takashima, K.

Tsuchiya, M.

West, L.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Yamamoto, N.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

N. Yamamoto, Y. Omigawa, K. Akahane, T. Kawanishi, and H. Sotobayashi, “Simultaneous 3 x 10 Gbps optical data transmission in 1-mum, C-, and L-wavebands over a single holey fiber using an ultra-broadband photonic transport system,” Opt. Express 18(5), 4695–4700 (2010).
[CrossRef] [PubMed]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C, 72350C–11 (2009).
[CrossRef]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[CrossRef] [PubMed]

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
[CrossRef]

Yokoyama, H.

Yoshida, E.

A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).

Zhukov, A.

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

Appl. Phys. B (1)

A. Y. Nevsky, U. Bressel, I. Ernsting, C. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

M. Pfister, M. B. Johnson, S. F. Alvarado, H. W. M. Sa-lemink, U. Marti, D. Martin, F. Morier-Genoud, and F. K. Reinhart, “Indium distribution in InGaAs quantum wires observed with the scanning tunneling microscope,” Appl. Phys. Lett. 67(10), 1459–1461 (1995).
[CrossRef]

N. Yamamoto, K. Akahane, S. Gozu, and N. Ohtani, “Over 1.3 µm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,” Appl. Phys. Lett. 86(20), 203118 (2005).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[CrossRef]

Electron. Lett. (2)

A. Gubenko, I. Krestnikov, D. Livshtis, S. Mikhrin, A. Kovsh, L. West, C. Bornholdt, N. Grote, and A. Zhukov, “Error-free 10 Gbit/s transmission using individual Fabry-Perot modes of low-noise quantum-dot laser,” Electron. Lett. 43(25), 1430–1431 (2007).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

IEICE Trans. Commun, E (1)

A. Sano, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Ultra-high capacity optical transmission technologies for 100 Tbit/s optical transport networks,” IEICE Trans. Commun, E 94-B, 400–408 (2011).

J. Appl. Phys. (1)

H. Y. Liu, M. Hopkinson, C. N. Harrison, M. J. Steer, R. Frith, I. R. Sellers, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure,” J. Appl. Phys. 93(5), 2931–2936 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments,” Jpn. J. Appl. Phys. 43(No. 8B), L1124–L1126 (2004).
[CrossRef]

N. Yamamoto, K. Akahane, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum Dot Optical Frequency Comb Laser with Mode-Selection Technique for 1-µm Waveband Photonic Transport System,” Jpn. J. Appl. Phys. 49(4), 04DG03 (2010).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Opt. Express (2)

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, H. Fujioka, and H. Takai, “Broadband light source using modulated quantum dot structures with sandwiched sub-nano separator (SSNS) technique,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 8(2), 328–330 (2011).
[CrossRef]

Other (7)

N. Yamamoto, Y. Yoshioka, K. Akahane, T. Kawanishi, H. Sotobayashi, and H. Takai, “100-GHz channel spacing and O-band quantum dot optical frequency comb generator with interference injection locking technique,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) 2011, paper CTuV7.

H. Liu, C.-F. Lam, and C. Johnson, “Scaling Optical Interconnects in Datacenter Networks - Opportunities and Challenges for WDM,” in Proceedings of 18th IEEE Symposium on High Performance Interconnects (IEEE, 2010), pp. 113–116.

A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper PDP19.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsu, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPB7.

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device technologies,” Proc. SPIE 7235, 72350C, 72350C–11 (2009).
[CrossRef]

Y. Tanaka, M. Ishida, Y. Maeda, T. Akiyama, T. Yamamoto, H. Song, M. Yamaguchi, Y. Nakata, K. Nishi, M. Sugawara, and Y. Arakawa, “High-Speed and Temperature-Insensitive Operation in 1.3-μm InAs/GaAs High-Density Quantum Dot Lasers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2009), paper OWJ1.

K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with Aeff of 160 mm2 and loss of 0.175 dB/km and using large-Aeff holey fibers enabling transmission over 600 nm bandwidth,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OThR1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Cross-sectional schematic image of conventional InAs QD structure embedded in QW layers and AFM image of the InAs QD formed on the InGaAs QW1. (b) Cross-sectional image and AFM image of novel InAs/InGaAs QD structure with SSNS growth technique. The AFM images are scaled to (1 × 1)-μm2 areas on the surface.

Fig. 2
Fig. 2

(a) Cross-sectional schematic image of a ridge-type 1.31-μm waveband InAs/InGaAs QD optical gain chip formed on a GaAs substrate through the SSNS growth technique. (b) Photograph of a developed novel InAs/InGaAs QD optical gain chip using the SSNS growth technique included into the external cavity system.

Fig. 3
Fig. 3

(a) External cavity optical set-up for narrow line-width and wavelength tunable QD laser. To control the active optical mode, multiple optical filters are utilized in this set-up. (b) Photograph image of developed compact bench-top light source module of the wavelength tunable QD external cavity laser.

Fig. 4
Fig. 4

Dependence of threshold current on lasing wavelength of a wavelength tunable InAs/InGaAs QD external cavity laser.

Fig. 5
Fig. 5

(a) Ultra-broad wavelength tuning range of wavelength tunable InAs/InGaAs QD external cavity laser. The output power is adjusted using an optical attenuator included in the light source module. (b) Dependence of optical output power on lasing wavelength from the developed QD light source without the attenuator control.

Fig. 6
Fig. 6

Estimation result for narrow line-width and stable operation of a wavelength tunable InAs/InGaAs QD external cavity laser.

Fig. 7
Fig. 7

Optical setup for demonstration of 10-Gb/s photonic data transmission using the developed wavelength tunable QD external cavity laser over the 11.4-km-long HF transmission line. (a) Fabricated QD structure with SSNS technique for the optical gain, (b) developed wavelength tunable QD light source, and (c) cross-sectional image of HF transmission line are re-shown as inset photographs.

Fig. 8
Fig. 8

(a) Eye diagrams and (b) BER measurement results before and after transmission using the developed wavelength tunable QD external cavity light source operating at the 1.31-μm wavelength. In (a), the x-axis is fixed to 17 ps/div.

Metrics