Abstract

The implications of increasing the symbol rate for a given digital-to-analog converter (DAC) sampling rate are investigated by considering the generation of 112 Gbit/s PM 16-QAM signals (14 Gsym/s) using a 21 GSa/s DAC with 6-bit resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
    [CrossRef]
  2. P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  3. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11×171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.1.
  4. M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.
  5. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
    [CrossRef]
  6. B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).
  7. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMA5.
  8. A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
    [CrossRef]
  9. Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/s 6b DAC in 65nm CMOS with 256×6b memory,” in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 194–196.
  10. N. Kikuchi and S. Sasaki, “Long-distance standard single-mode fiber transmission of 40-Gbit/s 16QAM signal with optical delay-detection and digital pre-distortion of chromatic dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThE3.
  11. T. Sugihara and T. Kobayashi, T, Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.B.2.
  12. S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80×224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical preamplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.7.
  13. J. C. Cartledge, J. D. Downie, J. Hurley, A. S. Karar, Y. Jiang, and K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.A.5.
  14. K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
    [CrossRef]
  15. P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
    [CrossRef]
  16. J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
    [CrossRef]
  17. J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
    [CrossRef]
  18. I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
    [CrossRef]
  19. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
    [CrossRef]
  20. H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.
  21. M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper P3.08.
  22. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  23. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [CrossRef]

2011 (4)

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[CrossRef]

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[CrossRef]

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

2010 (4)

P. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[CrossRef]

2009 (3)

2008 (2)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[CrossRef]

Awadalla, A.

Becker, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Berdaguer, P.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Borowiec, A.

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[CrossRef]

Bower, P.

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[CrossRef]

Buhl, L. L.

Cartledge, J. C.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Chagnon, M.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Châtelain, B.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Chiu, Y.-L.

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[CrossRef]

Dedic, I.

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[CrossRef]

Doerr, C. R.

Dreschmann, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Dupuy, J.-Y.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Freude, W.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Gagnon, F.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Gnauck, A. H.

Godin, J.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Harley, J.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

Hillerkuss, D.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Hoffmann, S.

Huebner, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Hwang, J.-K.

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[CrossRef]

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Jiang, Y.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

Jorge, F.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Karar, A. S.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

Konczykowska, A.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Koos, C.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Krause, D.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Krause, D. J.

Laperle, C.

Leuthold, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Liao, C.-S.

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[CrossRef]

Magarini, M.

Meyer, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Moulu, J.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Nebendahl, B.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Nodjiadjim, V.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Noé, R.

O'Sullivan, M.

Pfau, T.

Plant, D. V.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Riet, M.

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

Roberts, K.

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[CrossRef]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
[CrossRef]

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Schmogrow, R.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Sun, H.

Winter, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Winzer, P.

Wu, K.-T.

Xu, X.

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

Electron. Lett. (1)

A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47(6), 389–390 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

B. Châtelain, D. Krause, K. Roberts, M. Chagnon, X. Xu, F. Gagnon, J. C. Cartledge, and D. V. Plant, “SPM-tolerant pulse shaping for 40 Gb/s and 100 Gb/s dual-polarization QPSK systems,” IEEE Photon. Technol. Lett. 22, 1641–1643 (2010).

I. Fatadin, D. Ives, and S. J. Savory, “Compensation of frequency offset for differentially encoded 16- and 64-QAM in the presence of laser phase noise,” IEEE Photon. Technol. Lett. 22(3), 176–178 (2010).
[CrossRef]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett. 20(20), 1733–1735 (2008).
[CrossRef]

Int. J. Commun. Syst. (1)

J.-K. Hwang, Y.-L. Chiu, and C.-S. Liao, “Angle differential-QAM scheme for resolving phase ambiguity in continuous transmission system,” Int. J. Commun. Syst. 21(6), 631–641 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Commun. (1)

J. C. Cartledge, Y. Jiang, A. S. Karar, J. Harley, and K. Roberts, “Arbitrary waveform generation for pre-compensation in optical fiber communication systems,” Opt. Commun. 284(15), 3711–3717 (2011).
[CrossRef]

Opt. Fiber Technol. (2)

K. Roberts, A. Borowiec, and C. Laperle, “Technologies for optical systems beyond 100G,” Opt. Fiber Technol. 17(5), 387–394 (2011).
[CrossRef]

P. Bower and I. Dedic, “High speed converters and DSP for 100G and beyond,” Opt. Fiber Technol. 17(5), 464–471 (2011).
[CrossRef]

Other (10)

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse modulation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,” in Signal Processing in Photonic Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SPMA5.

H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers (Wiley-Interscience, 1997), section 5.4.

M. Selmi, Y. Jaouën, and P. Cibalt, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in 35th European Conference on Optical Communication, 2009. ECOC '09 (2009), paper P3.08.

S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11×171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.1.

M. Nölle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper We.8.C.4.

Y. M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/s 6b DAC in 65nm CMOS with 256×6b memory,” in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2011), pp. 194–196.

N. Kikuchi and S. Sasaki, “Long-distance standard single-mode fiber transmission of 40-Gbit/s 16QAM signal with optical delay-detection and digital pre-distortion of chromatic dispersion,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThE3.

T. Sugihara and T. Kobayashi, T, Fujimori, and T. Mizuochi, “Electronic pre-equalization technologies using high-speed DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.B.2.

S. Oda, T. Tanimura, Y. Cao, T. Hoshida, Y. Akiyama, H. Nakashima, C. Ohshima, K. Sone, Y. Aoki, M. Yan, Z. Tao, J. C. Rasmussen, Y. Yamamoto, and T. Sasaki, “80×224 Gb/s unrepeated transmission over 240 km of large-Aeff pure silica core fibre without remote optical preamplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.7.

J. C. Cartledge, J. D. Downie, J. Hurley, A. S. Karar, Y. Jiang, and K. Roberts, “Pulse shaping for 112 Gbit/s polarization multiplexed 16-QAM signals using a 21 GSa/s DAC,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.7.A.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 2 samples per symbol with quantization.

Fig. 2
Fig. 2

In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 1.5 samples per symbol with quantization.

Fig. 3
Fig. 3

In-phase eye diagram for a raised-cosine pulse (r = 0.5) using 1.5 samples per symbol with quantization and offset sampling.

Fig. 4
Fig. 4

In-phase eye diagram for a Gaussian filtered rectangular pulse using 2 samples per symbol with quantization.

Fig. 5
Fig. 5

In-phase eye diagram for a Gaussian filtered rectangular pulse using 1.5 samples per symbol with quantization and offset sampling.

Fig. 6
Fig. 6

Experimental setup. IQM: IQ modulator. EDFA: erbium doped fiber amplifier. VOA: variable optical attenuator. BBS: broadband source. OBPF: optical bandpass filter. OSA: optical spectrum analyzer.

Fig. 7
Fig. 7

Constellation diagram for the X-polarization of the 85.672 Gbit/s PM 16-QAM signal.

Fig. 8
Fig. 8

Constellation diagram for the X-polarization of the 112 Gbit/s PM 16-QAM signal.

Fig. 9
Fig. 9

Dependence of the bit error ratio on the optical signal-to-noise ratio (noise bandwidth of 0.1 nm) for 85.672 Gbit/s PM 16-QAM (raised-cosine pulse with r = 1).

Fig. 10
Fig. 10

Optical spectra for 112 Gbit/s PM 16-QAM (Gaussian filtered rectangular pulse and raised-cosine pulse with r = 0.5). The resolution bandwidth is 0.01 nm.

Fig. 11
Fig. 11

Dependence of the bit error ratio on the optical signal-to-noise ratio (noise bandwidth of 0.1 nm) for 112 Gbit/s PM 16-QAM (Gaussian filtered rectangular pulse and raised-cosine pulse with r = 0.5).

Fig. 12
Fig. 12

Constellation diagram for the X-polarization of the 112 Gbit/s PM 16-QAM signal. The red open constellation points indicate the symbol errors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S R max = 2B 1+r
d(t)=2 f 0 [ sin(2π f 0 t) 2π f 0 t ][ cos(2πr f 0 t) 1 (4r f 0 t) 2 ]

Metrics