Abstract

We present ultrahigh-speed and full C-band tunable wavelength conversions using cross-gain modulation in a quantum-dot semiconductor optical amplifier (QD-SOA). In this study, we successfully demonstrated error-free 320-Gbit/s operation of an all-optical wavelength converter (AOWC) using the QD-SOA for the first time. We also demonstrated full C-band tunable operation of the AOWC in the wavelength range between 1535 nm and 1565 nm at a bit rate of 160-Gbit/s.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  2. B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
    [CrossRef]
  3. L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, H. Hu, H. Ji, J. Xu, E. Palushani, J. L. Areal, A. T. Clausen, and P. Jeppesen, “Ultra-high-speed optical signal processing of Tbaud data signals,” in Proceeding of the 37th European Conference and Exhibition on Optical Communication (ECOC 2010), (Institute of Electrical and Electronics Engineers, New York, 2010), pp. Mo.1.A.1.
  4. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18(10), 9961–9966 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-10-9961 .
    [CrossRef] [PubMed]
  5. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
    [CrossRef]
  6. B. Huettl, A. G. Coca, H. Suche, R. Ludwig, C. Schmidt-Langhorst, H. G. Weber, W. Sohler, and C. Schubert, “320 Gbit/s DQPSK all-optical wavelength conversion using periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO/QELS), Technical Digest (CD) (Optical Society of America, 2007), paper CThF1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThF1 .
  7. H. Hu, H. Ji, M. Galili, M. Pu, H. C. H. Mulvad, L. K. O. Øwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Silicon chip wavelength conversion of ultra-high repetition rate data signals,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2011), Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-PDPA8 .
  8. M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
    [CrossRef]
  9. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [CrossRef]
  10. S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Much-Zehnder-Type switch,” IEEE Photon. Technol. Lett. 13(10), 1091–1093 (2001).
    [CrossRef]
  11. J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
    [CrossRef]
  12. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160-Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
    [CrossRef]
  13. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
    [CrossRef]
  14. M. Matsuura, N. Kishi, and T. Miki, “Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters,” J. Lightwave Technol. 25(1), 38–45 (2007).
    [CrossRef]
  15. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
    [CrossRef]
  16. C. Meuer, C. Schmidt-Langhorst, H. Schmeckebier, G. Fiol, D. Arsenijević, C. Schubert, and D. Bimberg, “40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(4), 3788–3798 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3788 .
    [CrossRef] [PubMed]
  17. M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett. 23(10), 615–617 (2011).
    [CrossRef]
  18. M. Matsuura, N. Calabretta, O. Raz, and H. J. S. Dorren, “Simultaneous multichannel wavelength conversion of 50-Gb/s NRZ-DQPSK signals with 100-GHz channel spacing using a quantum-dot SOA,” presented at the 37th European Conference and Exhibition on Optical Communication (ECOC 2011), Geneva, Switzerland, We.10.P1.51, 18–22 Sept. 2011.
  19. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-15-2910 .
    [CrossRef] [PubMed]
  20. M. Matsuura and N. Kishi, “Flexible broadband wavelength conversion in quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 23(15), 1097–1099 (2011).
    [CrossRef]
  21. O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
    [CrossRef]
  22. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
    [CrossRef]
  23. C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijević, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, and D. Bimberg, “80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering,” Opt. Express 19(6), 5134–5142 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-6-5134 .
    [CrossRef] [PubMed]
  24. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320-Gb/s wavelength conversion based on cross-gain modulation in quantum-dot semiconductor optical amplifiers,” presented at the 37th European Conference and Exhibition on Optical Communication (ECOC 2011), Geneva, Switzerland, Mo.1.A.1, 18–22 Sept. 2011.

2011 (5)

2010 (2)

2008 (2)

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

2007 (4)

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. W. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
[CrossRef]

M. Matsuura, N. Kishi, and T. Miki, “Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters,” J. Lightwave Technol. 25(1), 38–45 (2007).
[CrossRef]

2006 (1)

2004 (1)

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

2001 (1)

S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Much-Zehnder-Type switch,” IEEE Photon. Technol. Lett. 13(10), 1091–1093 (2001).
[CrossRef]

1998 (1)

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

1996 (2)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Akiyama, T.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

Anantathanasarn, S.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

Arakawa, Y.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

Arsenijevic, D.

Bennion, I.

Bernasconi, P.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Bimberg, D.

Bonk, R.

Bulla, D. A. P.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Cabot, S.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Calabretta, N.

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-15-2910 .
[CrossRef] [PubMed]

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

Cappuzzo, M.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Chen, E.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Choi, D.-Y.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Clausen, A.

Contestabile, G.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

de Waardt, H.

Dorren, H. J. S.

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Eggleton, B. J.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Fiol, G.

Fu, L.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Furukawa, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Galili, M.

Galperin, A.

Gomez, L.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Gomez-Agis, F.

Griffin, A.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Herrera, J.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

Hu, H.

Jaques, J.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Jeppesen, P.

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Khoe, G. D.

Kishi, N.

M. Matsuura and N. Kishi, “Flexible broadband wavelength conversion in quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 23(15), 1097–1099 (2011).
[CrossRef]

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett. 23(10), 615–617 (2011).
[CrossRef]

M. Matsuura, N. Kishi, and T. Miki, “Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters,” J. Lightwave Technol. 25(1), 38–45 (2007).
[CrossRef]

Kitayama, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

Koonen, A. M. J.

Lamont, M. R. E.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Laskowski, E.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Leuthold, J.

C. Meuer, C. Schmidt-Langhorst, R. Bonk, H. Schmeckebier, D. Arsenijević, G. Fiol, A. Galperin, J. Leuthold, C. Schubert, and D. Bimberg, “80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering,” Opt. Express 19(6), 5134–5142 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-6-5134 .
[CrossRef] [PubMed]

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Li, Z.

Liu, Y.

Luther-Davies, B.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Madden, S.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Mägi, E.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Maruta, A.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

Matsuura, M.

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-15-2910 .
[CrossRef] [PubMed]

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett. 23(10), 615–617 (2011).
[CrossRef]

M. Matsuura and N. Kishi, “Flexible broadband wavelength conversion in quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 23(15), 1097–1099 (2011).
[CrossRef]

M. Matsuura, N. Kishi, and T. Miki, “Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters,” J. Lightwave Technol. 25(1), 38–45 (2007).
[CrossRef]

Meuer, C.

Miki, T.

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Miyazaki, T.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Möller, L.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Morito, K.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

Mukherjee, B.

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

Mulvad, H. C. H.

Nakamura, S.

S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Much-Zehnder-Type switch,” IEEE Photon. Technol. Lett. 13(10), 1091–1093 (2001).
[CrossRef]

Nirmalathas, A.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Nötel, R.

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

Oxenløwe, L. K.

Palushani, E.

Pelusi, M. D.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Ramamurthy, B.

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

Raz, O.

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-15-2910 .
[CrossRef] [PubMed]

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

Schmeckebier, H.

Schmidt-Langhorst, C.

Schubert, C.

Sekiguchi, S.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

Shinada, S.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Shu, X. W.

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[CrossRef]

Sugawara, M.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

Ta’eed, V. G.

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Tajima, K.

S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Much-Zehnder-Type switch,” IEEE Photon. Technol. Lett. 13(10), 1091–1093 (2001).
[CrossRef]

Tangdiongga, E.

Tsuboya, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Ueno, Y.

S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Much-Zehnder-Type switch,” IEEE Photon. Technol. Lett. 13(10), 1091–1093 (2001).
[CrossRef]

Wada, N.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Wong-Foy, A.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Zhang, L.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

Zhang, S.

Electron. Lett. (2)

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang, P. Bernasconi, M. Cappuzzo, L. Gomez, E. Laskowski, E. Chen, A. Wong-Foy, and A. Griffin, “160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties,” Electron. Lett. 40(9), 554–555 (2004).
[CrossRef]

O. Raz, J. Herrera, N. Calabretta, E. Tangdiongga, S. Anantathanasarn, R. Nötel, and H. J. S. Dorren, “Non-inverted multiple wavelength converter at 40 Gbit/s using 1550 nm quantum dot SOA,” Electron. Lett. 44(16), 988–989 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Cross-gain modulation in quantum-dot SOA at 1550 nm,” IEEE J. Quantum Electron. 46(12), 1696–1703 (2010).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Areas Comm. 16(7), 1061–1073 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. D. Pelusi, V. G. Ta’eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

S. Nakamura, Y. Ueno, and K. Tajima, “168-Gb/s all-optical wavelength conversion with a symmetric-Much-Zehnder-Type switch,” IEEE Photon. Technol. Lett. 13(10), 1091–1093 (2001).
[CrossRef]

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett. 23(10), 615–617 (2011).
[CrossRef]

M. Matsuura and N. Kishi, “Flexible broadband wavelength conversion in quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 23(15), 1097–1099 (2011).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

Other (5)

M. Matsuura, N. Calabretta, O. Raz, and H. J. S. Dorren, “Simultaneous multichannel wavelength conversion of 50-Gb/s NRZ-DQPSK signals with 100-GHz channel spacing using a quantum-dot SOA,” presented at the 37th European Conference and Exhibition on Optical Communication (ECOC 2011), Geneva, Switzerland, We.10.P1.51, 18–22 Sept. 2011.

L. K. Oxenløwe, M. Galili, H. C. H. Mulvad, H. Hu, H. Ji, J. Xu, E. Palushani, J. L. Areal, A. T. Clausen, and P. Jeppesen, “Ultra-high-speed optical signal processing of Tbaud data signals,” in Proceeding of the 37th European Conference and Exhibition on Optical Communication (ECOC 2010), (Institute of Electrical and Electronics Engineers, New York, 2010), pp. Mo.1.A.1.

B. Huettl, A. G. Coca, H. Suche, R. Ludwig, C. Schmidt-Langhorst, H. G. Weber, W. Sohler, and C. Schubert, “320 Gbit/s DQPSK all-optical wavelength conversion using periodically poled LiNbO3,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (CLEO/QELS), Technical Digest (CD) (Optical Society of America, 2007), paper CThF1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThF1 .

H. Hu, H. Ji, M. Galili, M. Pu, H. C. H. Mulvad, L. K. O. Øwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Silicon chip wavelength conversion of ultra-high repetition rate data signals,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2011), Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-PDPA8 .

M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320-Gb/s wavelength conversion based on cross-gain modulation in quantum-dot semiconductor optical amplifiers,” presented at the 37th European Conference and Exhibition on Optical Communication (ECOC 2011), Geneva, Switzerland, Mo.1.A.1, 18–22 Sept. 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Fiber-to-fiber gain characteristics of the QD-SOA. (b) ASE spectra with various bias currents. (c) An example of gain response of the QD-SOA at a repetition rate of 10-GHz.

Fig. 2
Fig. 2

(a) Experimental setup. MLFL: Mode-locked fiber laser, PPG: Pulse pattern generator, LNM: LiNbO3 modulator, MUX: Multiplexer, ECL: External-cavity laser-diode, EDFA: Erbium-doped fiber amplifier, BPF: Bandpass filter, PC: Polarization controller, OC: Optical coupler, ISO: Isolator, PMF: Polarization-maintaining fiber, POL: Polarizer, DEMUX: Demultiplexer, PD: Photo-diode, EA: Error analyzer.

Fig. 3
Fig. 3

160-Gbit/s XGM signal spectra before (red, dotted line) and after (blue, solid line) the blue-shift filtering at the outputs of the QD-SOA and the shape and position of the employed BPF for the blue-shift filtering (green, dashed line). The insets show the eye-patterns of the 160-Gbit/s XGM signals before (upper) and after (bottom) the blue-shift filtering.

Fig. 4
Fig. 4

(a) 160-Gbit/s BER characteristics of original and converted signals in the cases of best (circle) and worst (square). (b) Received power at BER = 10−9 of the original and converted signals in the entire C-band.

Fig. 5
Fig. 5

Examples of eye-patterns. BtoB signal at (a) 1545 nm and (b) 1565 nm. (c)-(i) Converted signals. (c) Converted (1545 nm→1535 nm). (d) Converted (1565 nm→1540 nm). (e) Converted (1565 nm→1545 nm). (f) Converted (1565 nm→1550 nm). (g) Converted (1565 nm→1555 nm). (h) Converted (1545 nm→1560 nm). (i) Converted (1545 nm→1565 nm).

Fig. 6
Fig. 6

320-Gbit/s signal spectra at the outputs of the QD-SOA (red, dotted line) and the AOWC (blue, solid line) and the shape and position of the BPF (green, dashed line).

Fig. 7
Fig. 7

(a) BER characteristics of original and converted signals in the cases of best (circle) and worst (square). (b) 320-Gbit/s eye-patterns of the original and converted signals. (c) 40-Gbit/s demultiplexed eye-patterns of the original and converted signals.

Metrics