Abstract

We demonstrate a novel 10.5-Gbit/s transmission scheme over 20-km single fiber link by using a remotely fed 1-GHz reflective semiconductor optical amplifier (RSOA). Discrete multitone (DMT) modulation with adaptive bit-/power-loading is applied to overcome the bandwidth limitation of the RSOA. Transmission performance of the proposed scheme is analyzed in terms of various system parameters, such as the nonlinearity of the RSOA, optical signal-to-noise ratio of the optical seed carrier, the overhead size impact on dispersion, the number of DMT subcarriers, and the reflection noise from the single fiber link. We also report flexible-bandwidth-allocated multiple access operation based on the proposed scheme. The throughput for all cases is approximately 10 Gbit/s with BER < 10−3.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Miki and H. Ishio, “Viabilities of the wavelength-division-multiplexing transmission system over an optical fiber cable,” IEEE Trans. Commun. 26(7), 1082–1087 (1978).
    [CrossRef]
  2. K. M. Sivalingam and S. Subramaniam, Optical WDM Networks: Principles and Practice (Kluwer Academic publishers, New York, USA, 2000).
  3. A. K. Dutta, N. K. Dutta, and M. Fujiwara, WDM Technologies: Passive Optical Components (Academic Press, San Diego, CA, USA, 2003).
  4. C. F. Lam, Passive Optical Networks: Principles and Practice (Academic Press, Burlington, MA, USA, 2007).
  5. S. S. Wagner and H. L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol. 7(11), 1759–1768 (1989).
    [CrossRef]
  6. N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
    [CrossRef]
  7. M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future optical networks,” J. Lightwave Technol. 24(12), 4684–4696 (2006).
    [CrossRef]
  8. K. Iwatsuki, J.-I. Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” J. Lightwave Technol. 22(11), 2623–2630 (2004).
    [CrossRef]
  9. K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
    [CrossRef]
  10. M. Maier, M. Herzog, and M. Reisslein, “STARGATE: The next evolutionary step toward unleashing the potential of WDM EPONs,” IEEE Commun. Mag. 45(5), 50–56 (2007).
    [CrossRef]
  11. K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
    [CrossRef]
  12. M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
    [CrossRef]
  13. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
    [CrossRef]
  14. E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
    [CrossRef]
  15. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
    [CrossRef]
  16. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  17. M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
    [CrossRef]
  18. P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallecot, “Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDM PON,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2007), paper OWD1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OWD1
  19. K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
    [CrossRef]
  20. D. Torrientes, P. Chanclou, F. Laurent, S. Tsyier, Y. Chang, B. Charbonnier, and F. Raharimanitra, “RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2010), paper JThA28. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2010-JThA28
  21. K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
    [CrossRef]
  22. Q. Guo, A. V. Tran, and C.-J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett. 23(20), 1442–1444 (2011).
    [CrossRef]
  23. K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
    [CrossRef]
  24. I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
    [CrossRef]
  25. M. Omella, I. Papagiannakis, D. Klonidis, J. A. Lazaro, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design optimization for 10Gb/s full-duplex transmission using RSOA-based ONU with electrical and optical filtering and equalization,” in Proceedings of 35th European Conference and Exhibition on Optical Communication (VDE VERLAG GMBH, Berlin, 2009), pp. 1–2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5287177&isnumber=5286960
  26. I. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OWG2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5465603&isnumber=5465158
  27. I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
    [CrossRef]
  28. H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
    [CrossRef]
  29. H. Kim, “Transmission of 10-Gb/s Directly Modulated RSOA Signals in Single-Fiber Loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
    [CrossRef]
  30. H.-S. Kim, B.-S. Choi, K.-S. Kim, D. C. Kim, O.-K. Kwon, and D.-K. Oh, “High modulation bandwidth of multisection RSOA,” in Proceedings of 9th International Conference on Optical Internet (2010), pp. 1–3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5546570&isnumber=5546327
  31. B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
    [CrossRef]
  32. B. Schrenk, J. Bauwelinck, J. A. Lazaro, C. Kazmierski, X.-Z. Qiu, and J. Prat, “Dual-operability and bandwidth partitioning enabled by an ONU with tandem-modulator,” J. Opt. Commun. Netw. 3(9), 674–682 (2011).
    [CrossRef]
  33. G. de Valicourt, D. Make, C. Fortin, A. Enard, F. Van Dijk, and R. Brenot, “10 Gbit/s modulation of reflective SOA without any electronic processing,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2011), paper OThT2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThT2
  34. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in Proceedings of 34th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2008), pp. 1–2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4729576&isnumber=4729060
  35. R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
    [CrossRef]
  36. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010).
    [CrossRef]
  37. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
    [CrossRef]
  38. J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in proceedings of IEEE International Symposium on Information Theory (Institute of Electrical and Electronics Engineers, Cambridge, MA, 1998), pp. 193. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=708791&isnumber=15310

2011 (4)

Q. Guo, A. V. Tran, and C.-J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett. 23(20), 1442–1444 (2011).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

B. Schrenk, J. Bauwelinck, J. A. Lazaro, C. Kazmierski, X.-Z. Qiu, and J. Prat, “Dual-operability and bandwidth partitioning enabled by an ONU with tandem-modulator,” J. Opt. Commun. Netw. 3(9), 674–682 (2011).
[CrossRef]

H. Kim, “Transmission of 10-Gb/s Directly Modulated RSOA Signals in Single-Fiber Loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
[CrossRef]

2010 (6)

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
[CrossRef]

K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
[CrossRef]

2008 (4)

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

2007 (1)

M. Maier, M. Herzog, and M. Reisslein, “STARGATE: The next evolutionary step toward unleashing the potential of WDM EPONs,” IEEE Commun. Mag. 45(5), 50–56 (2007).
[CrossRef]

2006 (2)

K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
[CrossRef]

M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future optical networks,” J. Lightwave Technol. 24(12), 4684–4696 (2006).
[CrossRef]

2005 (1)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

2001 (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

1996 (1)

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[CrossRef]

1994 (1)

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

1989 (1)

S. S. Wagner and H. L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol. 7(11), 1759–1768 (1989).
[CrossRef]

1978 (1)

T. Miki and H. Ishio, “Viabilities of the wavelength-division-multiplexing transmission system over an optical fiber cable,” IEEE Trans. Commun. 26(7), 1082–1087 (1978).
[CrossRef]

Agata, A.

K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
[CrossRef]

Bauwelinck, J.

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[CrossRef]

Birbas, A. N.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

Bodeep, G. E.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Bordonalli, A. C.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

Brenot, R.

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

Breyer, F.

Burrus, C. A.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Chae, C.-J.

Q. Guo, A. V. Tran, and C.-J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett. 23(20), 1442–1444 (2011).
[CrossRef]

Cho, K. Y.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Choi, B. S.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[CrossRef]

Chung, Y. C.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[CrossRef]

Conforti, E.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

Darcie, T. E.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

de Valicourt, G.

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

Desai, B. N.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Downs, M. M.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Dragone, C.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Dutta, N. K.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Feuer, M. D.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Ford, C.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Frigo, N. J.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Fujiwara, M.

Gallep, C. M.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

Giddings, R. P.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

Guo, Q.

Q. Guo, A. V. Tran, and C.-J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett. 23(20), 1442–1444 (2011).
[CrossRef]

Han, S.-K.

Healey, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Herzog, M.

M. Maier, M. Herzog, and M. Reisslein, “STARGATE: The next evolutionary step toward unleashing the potential of WDM EPONs,” IEEE Commun. Mag. 45(5), 50–56 (2007).
[CrossRef]

Ho, S. H.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

Hong, M.-K.

Hugues-Salas, E.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

Iannone, P. P.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Ishio, H.

T. Miki and H. Ishio, “Viabilities of the wavelength-division-multiplexing transmission system over an optical fiber cable,” IEEE Trans. Commun. 26(7), 1082–1087 (1978).
[CrossRef]

Iwatsuki, K.

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Jin, X. Q.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

Johnston, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Kang, S.-M.

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

Kani, J.-I.

Kazmierski, C.

Kikidis, J.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, H.

H. Kim, “Transmission of 10-Gb/s Directly Modulated RSOA Signals in Single-Fiber Loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
[CrossRef]

H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
[CrossRef]

Klonidis, D.

Koch, T. L.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Koonen, A. M. J.

Koren, U.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Lazaro, J. A.

B. Schrenk, J. Bauwelinck, J. A. Lazaro, C. Kazmierski, X.-Z. Qiu, and J. Prat, “Dual-operability and bandwidth partitioning enabled by an ONU with tandem-modulator,” J. Opt. Commun. Netw. 3(9), 674–682 (2011).
[CrossRef]

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

Lazaro Villa, J. A.

Lealman, I.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Lee, C.-H.

K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
[CrossRef]

Lee, H. K.

K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
[CrossRef]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, K.

K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
[CrossRef]

K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
[CrossRef]

Lee, S. B.

K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
[CrossRef]

Lee, S. C. J.

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lemberg, H. L.

S. S. Wagner and H. L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol. 7(11), 1759–1768 (1989).
[CrossRef]

Magill, P. D.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Maier, M.

M. Maier, M. Herzog, and M. Reisslein, “STARGATE: The next evolutionary step toward unleashing the potential of WDM EPONs,” IEEE Commun. Mag. 45(5), 50–56 (2007).
[CrossRef]

Miki, T.

T. Miki and H. Ishio, “Viabilities of the wavelength-division-multiplexing transmission system over an optical fiber cable,” IEEE Trans. Commun. 26(7), 1082–1087 (1978).
[CrossRef]

Moore, R.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Mun, S.-G.

K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
[CrossRef]

Nejabati, R.

O’Mahony, M. J.

Okonkwo, C.

Omella, M.

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

Papagiannakis, I.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Perino, J. S.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Perrin, S.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Politi, C.

Prat, J.

B. Schrenk, J. Bauwelinck, J. A. Lazaro, C. Kazmierski, X.-Z. Qiu, and J. Prat, “Dual-operability and bandwidth partitioning enabled by an ONU with tandem-modulator,” J. Opt. Commun. Netw. 3(9), 674–682 (2011).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

Presby, H. M.

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

Qiu, X.-Z.

Randel, S.

Raybon, G.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Reisslein, M.

M. Maier, M. Herzog, and M. Reisslein, “STARGATE: The next evolutionary step toward unleashing the potential of WDM EPONs,” IEEE Commun. Mag. 45(5), 50–56 (2007).
[CrossRef]

Rivers, L.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Schrenk, B.

B. Schrenk, J. Bauwelinck, J. A. Lazaro, C. Kazmierski, X.-Z. Qiu, and J. Prat, “Dual-operability and bandwidth partitioning enabled by an ONU with tandem-modulator,” J. Opt. Commun. Netw. 3(9), 674–682 (2011).
[CrossRef]

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

Shunk, S. C.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Simeonidou, D.

Song, J.-H.

K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
[CrossRef]

Sorin, W. V.

K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
[CrossRef]

Sugie, T.

Suzuki, H.

Takesue, H.

Takushima, Y.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

Tang, J. M.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

Tangdiongga, E.

Tomkos, I.

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

Townley, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Townsend, P.

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

Tran, A. V.

Q. Guo, A. V. Tran, and C.-J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett. 23(20), 1442–1444 (2011).
[CrossRef]

van den Boom, H. P. A.

Wagner, S. S.

S. S. Wagner and H. L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol. 7(11), 1759–1768 (1989).
[CrossRef]

Wei, J. L.

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

Wiesenfeld, J. M.

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

Won, Y.-Y.

Yang, H.

Electron. Lett. (1)

P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37(19), 1181–1182 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

M. Maier, M. Herzog, and M. Reisslein, “STARGATE: The next evolutionary step toward unleashing the potential of WDM EPONs,” IEEE Commun. Mag. 45(5), 50–56 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (14)

K. Lee, S.-G. Mun, C.-H. Lee, and S. B. Lee, “Reliable wavelength-division-multiplexed passive optical network using novel protection scheme,” IEEE Photon. Technol. Lett. 20(9), 679–681 (2008).
[CrossRef]

M. D. Feuer, J. M. Wiesenfeld, J. S. Perino, C. A. Burrus, G. Raybon, S. C. Shunk, and N. K. Dutta, “Single-port laser-amplifier modulators for local access,” IEEE Photon. Technol. Lett. 8(9), 1175–1177 (1996).
[CrossRef]

N. J. Frigo, P. P. Iannone, P. D. Magill, T. E. Darcie, M. M. Downs, B. N. Desai, U. Koren, T. L. Koch, C. Dragone, H. M. Presby, and G. E. Bodeep, “A wavelength-division multiplexed passive optical network with cost-shared components,” IEEE Photon. Technol. Lett. 6(11), 1365–1367 (1994).
[CrossRef]

K. Lee, J.-H. Song, H. K. Lee, and W. V. Sorin, “Multistage access network for bidirectional DWDM transmission using ASE-injected FP-LD,” IEEE Photon. Technol. Lett. 18(6), 761–763 (2006).
[CrossRef]

K. Y. Cho, Y. Takushima, and Y. C. Chung, “10-Gb/s operation of RSOA for WDM PON,” IEEE Photon. Technol. Lett. 20(18), 1533–1535 (2008).
[CrossRef]

K. Y. Cho, A. Agata, Y. Takushima, and Y. C. Chung, “Performance of forward-error correction code in 10-Gb/s RSOA-based WDM PON,” IEEE Photon. Technol. Lett. 22(1), 57–59 (2010).
[CrossRef]

Q. Guo, A. V. Tran, and C.-J. Chae, “10-Gb/s WDM-PON based on low-bandwidth RSOA using partial response equalization,” IEEE Photon. Technol. Lett. 23(20), 1442–1444 (2011).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett. 23(8), 495–497 (2011).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization,” IEEE Photon. Technol. Lett. 20(24), 2168–2170 (2008).
[CrossRef]

H. Kim, “10-Gb/s operation of RSOA using a delay interferometer,” IEEE Photon. Technol. Lett. 22(18), 1379–1381 (2010).
[CrossRef]

H. Kim, “Transmission of 10-Gb/s Directly Modulated RSOA Signals in Single-Fiber Loopback WDM PONs,” IEEE Photon. Technol. Lett. 23(14), 965–967 (2011).
[CrossRef]

B. Schrenk, G. de Valicourt, M. Omella, J. A. Lazaro, R. Brenot, and J. Prat, “Direct 10-Gb/s modulation of a single-section RSOA in PONs with high optical budget,” IEEE Photon. Technol. Lett. 22(6), 392–394 (2010).
[CrossRef]

R. P. Giddings, E. Hugues-Salas, X. Q. Jin, J. L. Wei, and J. M. Tang, “Experimental demonstration of real-time optical OFDM transmission at 7.5 Gb/s over 25-km SSMF using a 1-GHz RSOA,” IEEE Photon. Technol. Lett. 22(11), 745–747 (2010).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

IEEE Trans. Commun. (2)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[CrossRef]

T. Miki and H. Ishio, “Viabilities of the wavelength-division-multiplexing transmission system over an optical fiber cable,” IEEE Trans. Commun. 26(7), 1082–1087 (1978).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

E. Conforti, C. M. Gallep, S. H. Ho, A. C. Bordonalli, and S.-M. Kang, “Carrier reuse with gain compression and feed-forward semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 50(1), 77–81 (2002).
[CrossRef]

J. Lightwave Technol. (7)

H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21(11), 2546–2556 (2003).
[CrossRef]

K. Iwatsuki, J.-I. Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” J. Lightwave Technol. 22(11), 2623–2630 (2004).
[CrossRef]

M. J. O’Mahony, C. Politi, D. Klonidis, R. Nejabati, and D. Simeonidou, “Future optical networks,” J. Lightwave Technol. 24(12), 4684–4696 (2006).
[CrossRef]

M.-K. Hong, Y.-Y. Won, and S.-K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
[CrossRef]

H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” J. Lightwave Technol. 28(4), 352–359 (2010).
[CrossRef]

I. Papagiannakis, M. Omella, D. Klonidis, J. A. Lazaro Villa, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design characteristics for a full-duplex IM/IM bidirectional transmission at 10 Gb/s using low bandwidth RSOA,” J. Lightwave Technol. 28(7), 1094–1101 (2010).
[CrossRef]

S. S. Wagner and H. L. Lemberg, “Technology and system issues for a WDM-based fiber loop architecture,” J. Lightwave Technol. 7(11), 1759–1768 (1989).
[CrossRef]

J. Opt. Commun. Netw. (1)

Other (11)

J. Campello, “Optimal discrete bit loading for multicarrier modulation systems,” in proceedings of IEEE International Symposium on Information Theory (Institute of Electrical and Electronics Engineers, Cambridge, MA, 1998), pp. 193. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=708791&isnumber=15310

G. de Valicourt, D. Make, C. Fortin, A. Enard, F. Van Dijk, and R. Brenot, “10 Gbit/s modulation of reflective SOA without any electronic processing,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2011), paper OThT2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThT2

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” in Proceedings of 34th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2008), pp. 1–2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4729576&isnumber=4729060

H.-S. Kim, B.-S. Choi, K.-S. Kim, D. C. Kim, O.-K. Kwon, and D.-K. Oh, “High modulation bandwidth of multisection RSOA,” in Proceedings of 9th International Conference on Optical Internet (2010), pp. 1–3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5546570&isnumber=5546327

P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, and F. Mallecot, “Demonstration of RSOA-based remote modulation at 2.5 and 5 Gbit/s for WDM PON,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2007), paper OWD1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OWD1

D. Torrientes, P. Chanclou, F. Laurent, S. Tsyier, Y. Chang, B. Charbonnier, and F. Raharimanitra, “RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2010), paper JThA28. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2010-JThA28

M. Omella, I. Papagiannakis, D. Klonidis, J. A. Lazaro, A. N. Birbas, J. Kikidis, I. Tomkos, and J. Prat, “Design optimization for 10Gb/s full-duplex transmission using RSOA-based ONU with electrical and optical filtering and equalization,” in Proceedings of 35th European Conference and Exhibition on Optical Communication (VDE VERLAG GMBH, Berlin, 2009), pp. 1–2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5287177&isnumber=5286960

I. Cano, M. Omella, J. Prat, and P. Poggiolini, “Colorless 10Gb/s extended reach WDM PON with low BW RSOA using MLSE,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OWG2. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5465603&isnumber=5465158

K. M. Sivalingam and S. Subramaniam, Optical WDM Networks: Principles and Practice (Kluwer Academic publishers, New York, USA, 2000).

A. K. Dutta, N. K. Dutta, and M. Fujiwara, WDM Technologies: Passive Optical Components (Academic Press, San Diego, CA, USA, 2003).

C. F. Lam, Passive Optical Networks: Principles and Practice (Academic Press, Burlington, MA, USA, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Operational principle of the proposed scheme for multiple access with wavelength sharing.

Fig. 2
Fig. 2

Experimental setup (inset: frequency response of the RSOA operated at a bias current of 50 mA, the input RSOA optical power of 0 dBm).

Fig. 3
Fig. 3

Probe EVM, bit-/power-loading profile and its BER performance per each subcarrier for (a) the optical back-to-back and (b) the 20-km single fiber link.

Fig. 5
Fig. 5

Maximum achievable data rate of the proposed scheme as a function of (a) the input optical power of the preamplifier and (b) the input optical power of the RSOA.

Fig. 4
Fig. 4

Recovered signal constellations for the 20-km single fiber transmission in the case of (a) 32-QAM, (b) 16-QAM, (c) 8-QAM, (d) 4-QAM, and (e) BPSK-encoded DMT subcarriers.

Fig. 6
Fig. 6

Performance analyses of the proposed scheme as a function of; the number of DMT subcarriers with (a) the input optical power of the preamplifier, (b) the input optical power of the RSOA; (c) the magnitude of the modulating DMT signal, and (d) the cyclic prefix.

Fig. 7
Fig. 7

Flexible bandwidth allocated multiple access measurements: bit-loading profiles and power spectral densities for (a) 50:50 (4.56:4.53Gbit/s) and (b) 75:25 (6.89:2.21Gbit/s) distribution scenario; (c) signal constellations for 50:50 allocation (top: ONU1-16QAM, bottom: ONU2-8QAM).

Fig. 8
Fig. 8

Validation of the colorless operation in terms of maximum achievable total throughput via various bandwidth allocation scenarios (measured at the input optical power of the RSOA and the preamplifier, −10 dBm and −15 dBm, respectively).

Metrics