Abstract

We propose a transmission distance-independent technique for modal dispersion compensation over few-mode fiber that uses a single-input multiple-output configuration and adaptive equalization. Our technique can compensate for the modal dispersion of a signal with 1-tap FIR filters regardless of the amount of modal delay difference, and enables us to utilize fiber with a large core and few modes as a long-haul transmission line. We also show numerically the advantage of few-mode photonic crystal fiber (PCF) for realizing a larger effective area (Aeff), and finally we report a transmission over a large-core two-mode PCF with Aeff>280 μm2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128 QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” OFC2011 PDPB5 (2011).
  2. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  3. T. Matsui, T. Sakamoto, K. Tsujikawa, S. Tomita, and M. Tsubokawa, “Single-mode photonic crystal fiber design with ultralarge effective area and low bending loss for ultrahigh-speed WDM transmission,” J. Lightwave Technol. 29(4), 511–515 (2011).
    [CrossRef]
  4. X. Zhao and F. S. Choa, “Demonstration of 10-Gb/s transmission over a 1.5-km-long multimode fiber using equalization techniques,” IEEE Photon. Technol. Lett. 14(8), 1187–1189 (2002).
    [CrossRef]
  5. M. Greenberg, M. Nazarathy, and M. Orenstein, “Performance of high-bitrate multiple-output links over multimode fiber with intermodal dispersion,” J. Lightwave Technol. 26(14), 2192–2201 (2008).
    [CrossRef]
  6. T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Modal dispersion compensation technique for long-haul transmission over few-mode fibre with SIMO configuration,” ECOC2011 P1.82 (2011).
  7. Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
    [CrossRef]
  8. T. Matsui, K. Nakajima, and C. Fukai, “Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands,” J. Lightwave Technol. 27(23), 5410–5416 (2009).
    [CrossRef]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

2002 (1)

X. Zhao and F. S. Choa, “Demonstration of 10-Gb/s transmission over a 1.5-km-long multimode fiber using equalization techniques,” IEEE Photon. Technol. Lett. 14(8), 1187–1189 (2002).
[CrossRef]

1993 (1)

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

Choa, F. S.

X. Zhao and F. S. Choa, “Demonstration of 10-Gb/s transmission over a 1.5-km-long multimode fiber using equalization techniques,” IEEE Photon. Technol. Lett. 14(8), 1187–1189 (2002).
[CrossRef]

Essiambre, R. J.

Foschini, G. J.

Fukai, C.

Goebel, B.

Greenberg, M.

Haas, Z.

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

Kramer, G.

Matsui, T.

Nakajima, K.

Nazarathy, M.

Orenstein, M.

Sakamoto, T.

Santoro, M. A.

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

Tomita, S.

Tsubokawa, M.

Tsujikawa, K.

Winzer, P. J.

Zhao, X.

X. Zhao and F. S. Choa, “Demonstration of 10-Gb/s transmission over a 1.5-km-long multimode fiber using equalization techniques,” IEEE Photon. Technol. Lett. 14(8), 1187–1189 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Zhao and F. S. Choa, “Demonstration of 10-Gb/s transmission over a 1.5-km-long multimode fiber using equalization techniques,” IEEE Photon. Technol. Lett. 14(8), 1187–1189 (2002).
[CrossRef]

J. Lightwave Technol. (5)

Other (2)

D. Qian, M. F. Huang, E. Ip, Y. K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128 QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” OFC2011 PDPB5 (2011).

T. Sakamoto, T. Mori, T. Yamamoto, and S. Tomita, “Modal dispersion compensation technique for long-haul transmission over few-mode fibre with SIMO configuration,” ECOC2011 P1.82 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic concept of modal dispersion compensation technique when n = 2.

Fig. 2
Fig. 2

Design map realizing 1~3 mode operation and bending loss compatible with ITU-T G.655.

Fig. 3
Fig. 3

Maximum effective areas of PCF and SIF as a function of mode number.

Fig. 4
Fig. 4

Bending characteristic of fabricated large-core PCF.

Fig. 5
Fig. 5

(a) Cross-section of PCF and (b) calculated electric field of fundamental mode.

Fig. 6
Fig. 6

Impulse response after passing through PCF.

Fig. 7
Fig. 7

Experimental setup for transmission over two-mode fibers with 1 × 2 configuration.

Fig. 8
Fig. 8

Received signals at receiver 1 or 2 without modal dispersion compensation.

Fig. 9
Fig. 9

Impulse responses after passing through two-mode SIF and multi-mode splitter.

Fig. 10
Fig. 10

Recovered signals when using (a) SISO and (b) SIMO configuration.

Fig. 11
Fig. 11

Received signals at receiver 1 or 2 and recovered signals after compensation for signals transmitted over two-mode PCF.

Fig. 12
Fig. 12

BER performances of transmission over two-mode PCF and SIF with 1 × 2 configuration.

Tables (1)

Tables Icon

Table 1 Structural parameters of fabricated PCF

Metrics