Abstract

We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Qeff) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at ~2/3rd of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  2. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearity,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [CrossRef]
  3. D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
    [CrossRef]
  4. X. Zhou, E. F. Mateo, and G. Li, “Fiber nonlinearity management – from carrier perspective,” Optical Fiber Communication Conference, OFC ‘11, NThB4, (2011).
  5. C. Weber, C.-A. Bunge, and K. Petermann, “Fiber nonlinearities in systems using electronic predistortion of dispersion at 10 and 40 Gbit/s,” J. Lightwave Technol. 27(16), 3654–3661 (2009).
    [CrossRef]
  6. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express 19(6), 5219–5224 (2011).
    [CrossRef] [PubMed]
  7. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [CrossRef]
  8. D. Rafique and A. D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Express 19(4), 3449–3454 (2011).
    [CrossRef] [PubMed]
  9. A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
    [CrossRef]
  10. I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
    [CrossRef]
  11. A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
    [CrossRef]
  12. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  13. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” Optical Fiber Communication Conference, OFC ‘10, OMJ6, (2010).
  14. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  15. L. B. Du and A. J. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” Optical Fiber Communication Conference, OFC’11, OWW2, (2011).
  16. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19(10), 9453–9460 (2011).
    [CrossRef] [PubMed]
  17. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” Optical Fiber Communication Conference, OFC ‘11, 2011, OWW3.
  18. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
    [CrossRef]

2011 (3)

2010 (4)

2009 (2)

2006 (1)

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

2003 (1)

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

1998 (1)

A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
[CrossRef]

1991 (1)

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

1990 (1)

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearity,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Ania-Castanon, J. D.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

Buhl, L. L.

Bunge, C.-A.

Chraplyvy, A. R.

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearity,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Chugtai, M. N.

Cotter, D.

Doerr, C. R.

Ellis, A. D.

Forzati, M.

Gnauck, A. H.

Hoffmann, S.

Ip, E.

Kahn, J. M.

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

Lau, A. P. T.

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
[CrossRef]

Magarini, M.

Marcuse, D.

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

Mårtensson, J.

Mecozzi, A.

A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
[CrossRef]

Mussolin, M.

Nasieva, I.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

Noé, R.

Petermann, K.

Pfau, T.

Rafique, D.

Tkach, R. W.

D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9(1), 121–128 (1991).
[CrossRef]

Turitsyn, S. K.

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

Weber, C.

Winzer, P. J.

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
[CrossRef]

Zhao, J.

Electron. Lett. (1)

I. Nasieva, J. D. Ania-Castanon, and S. K. Turitsyn, “Nonlinearity management in fibre links with distributed amplification,” Electron. Lett. 39(11), 856–857 (2003).
[CrossRef]

IEEE Photon. J. (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 2(5), 816–832 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Mecozzi, “On the optimization of the gain distribution of transmission lines with unequal amplifier spacing,” IEEE Photon. Technol. Lett. 10(7), 1033–1035 (1998).
[CrossRef]

A. P. T. Lau and J. M. Kahn, “Power profile optimization in phase-modulated systems in presence of nonlinear phase noise,” IEEE Photon. Technol. Lett. 18(23), 2514–2516 (2006).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Express (3)

Other (4)

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” Optical Fiber Communication Conference, OFC ‘11, 2011, OWW3.

L. B. Du and A. J. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” Optical Fiber Communication Conference, OFC’11, OWW2, (2011).

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” Optical Fiber Communication Conference, OFC ‘10, OMJ6, (2010).

X. Zhou, E. F. Mateo, and G. Li, “Fiber nonlinearity management – from carrier perspective,” Optical Fiber Communication Conference, OFC ‘11, NThB4, (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation setup for 112 Gb/s PM-mQAM (m=4, 16, 64, 256) transmission system with M total spans (step after Nth span).

Fig. 2
Fig. 2

Left: Transmission link power profile as a function of transmission distance. A positive or negative step in the power profile is ensured with an EDFA or a passive attenuator element, respectively. Right: Negative (circle) or Positive (triangle) step at N+1th span, ensuring a fixed received OSNR by launching high or low power, respectively.

Fig. 3
Fig. 3

Performance of PM-64QAM at a transmission distance of 3,200 km (40 spans) after DBP. Contour curves represent a) Qeff and, b) FWM power, as a function of position and gain/loss of power profile shaping element. Received OSNR is fixed to 24.4 dB for all the configurations.

Fig. 4
Fig. 4

Link power profile as a function of transmission distance for an 8 span system. Signal power profile (top), noise power profile (bottom, zero offset for each curve), where N(1,2,6) represent various noise terms. The arrow represents gain element (up) for forward transmission, and loss element (down) for digital back-propagation.

Fig. 5
Fig. 5

Performance of PM-64QAM at a transmission distance of 3,200 km (40 spans) after DBP. a) Contour curves represent launch power as a function of position and gain/loss of power profile shaping element; b) Qeff as a function of OSNR for the optimum profile with a gain of 4 dB after the 25th span.

Fig. 6
Fig. 6

Qeff for PM-mQAM at transmission distances of 1,280 km (256QAM), 3,200 km (64QAM), 8,400 km (16QAM), and 21,840 km (4QAM), a) Positive-step profile (4 dB, at 2/3rd of the total reach), b) Negative-step profile (3 dB, at 2/3rd of the total reach), a) Conventional power profile (launched power = received power).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I Total 2 = m=1 N ( I FWM(1) ) 2 +s m=N+1 M ( I FWM(2) ) 2
I FWM(x) =m I noise . I signal(x) 2 ( K 1 + K 2 +{ Log( m )1+1/m } K 3 )
K 1 = γ 2 /( π 2 | β 2 |α), K 2 = K 1 ln( 2 π 2 B 2 | β 2 |/α )π, K 3 =2π K 1 /(αL)

Metrics