Abstract

Optical arbitrary waveform generator (OAWG), which can generate pre-distorted ultra-wideband (UWB) pulses to tolerate the chromatic dispersion (CD) of the fiber without any other CD compensation solutions, provides a good solution for the UWB over fiber system. In our paper, we experimentally demonstrate a new OAWG scheme based on multiple incoherent continuous wave lights by double side band with suppressed carrier (DSB-SC) modulation. UWB Gaussian monocycle and doublet pulses are generated and the chromatic dispersion of 20-km, 50-km and 100-km single-mode fiber (SMF) are compensated by the OAWG system without any other CD compensation solutions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  3. S. L. Pan and J. P. Yao, “A Photonic UWB Generator Reconfigurable for Multiple Modulation Formats,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
    [CrossRef]
  4. S. L. Pan and J. P. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [CrossRef]
  5. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic Synthesis of Broadband Microwave Arbitrary Waveforms Applicable to Ultra-Wideband Communication,” IEEE Microwave Wirel. Compon. Lett. 15(4), 226–228 (2005).
    [CrossRef]
  6. D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. Yoo, “360-Gb/s Optical Transmitter With Arbitrary Modulation Format and Dispersion Precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
    [CrossRef]
  7. A. M. Weiner, “Fourier information optics for the ultrafast time domain,” Appl. Opt. 47(4), A88–A96 (2008).
    [CrossRef] [PubMed]
  8. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  9. C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
    [CrossRef]
  10. N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. Yoo, “Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation,” Opt. Lett. 33(15), 1714–1716 (2008).
    [CrossRef] [PubMed]
  11. D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express 17(18), 15911–15925 (2009).
    [CrossRef] [PubMed]
  12. X. Zhou, X. P. Zheng, and B. K. Zhou, “Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2011), paper We.10.P1.121.

2010

2009

D. J. Geisler, N. K. Fontaine, T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express 17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

S. L. Pan and J. P. Yao, “A Photonic UWB Generator Reconfigurable for Multiple Modulation Formats,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. Yoo, “360-Gb/s Optical Transmitter With Arbitrary Modulation Format and Dispersion Precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

2008

2007

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of Ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

2005

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic Synthesis of Broadband Microwave Arbitrary Waveforms Applicable to Ultra-Wideband Communication,” IEEE Microwave Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

2003

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Caraquitena, J.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Fontaine, N. K.

Geisler, D. J.

He, T.

Heritage, J. P.

Huang, C.-B.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Jiang, Z.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Leaird, D. E.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic Synthesis of Broadband Microwave Arbitrary Waveforms Applicable to Ultra-Wideband Communication,” IEEE Microwave Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic Synthesis of Broadband Microwave Arbitrary Waveforms Applicable to Ultra-Wideband Communication,” IEEE Microwave Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

Okamoto, K.

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. Yoo, “360-Gb/s Optical Transmitter With Arbitrary Modulation Format and Dispersion Precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, J. P. Heritage, K. Okamoto, and S. J. Yoo, “Compact 10 GHz loopback arrayed-waveguide grating for high-fidelity optical arbitrary waveform generation,” Opt. Lett. 33(15), 1714–1716 (2008).
[CrossRef] [PubMed]

Pan, S. L.

S. L. Pan and J. P. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “A Photonic UWB Generator Reconfigurable for Multiple Modulation Formats,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
[CrossRef]

Paraschis, L.

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Scott, R. P.

Wang, Q.

Weiner, A. M.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

A. M. Weiner, “Fourier information optics for the ultrafast time domain,” Appl. Opt. 47(4), A88–A96 (2008).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic Synthesis of Broadband Microwave Arbitrary Waveforms Applicable to Ultra-Wideband Communication,” IEEE Microwave Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

Yang, C.

Yao, J. P.

Yoo, S.

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. Yoo, “360-Gb/s Optical Transmitter With Arbitrary Modulation Format and Dispersion Precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

Yoo, S. J.

Zeng, F.

Appl. Opt.

IEEE Microw. Mag.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless system,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic Synthesis of Broadband Microwave Arbitrary Waveforms Applicable to Ultra-Wideband Communication,” IEEE Microwave Wirel. Compon. Lett. 15(4), 226–228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

D. J. Geisler, N. K. Fontaine, R. P. Scott, J. P. Heritage, K. Okamoto, and S. Yoo, “360-Gb/s Optical Transmitter With Arbitrary Modulation Format and Dispersion Precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

S. L. Pan and J. P. Yao, “A Photonic UWB Generator Reconfigurable for Multiple Modulation Formats,” IEEE Photon. Technol. Lett. 21(19), 1381–1383 (2009).
[CrossRef]

J. Lightwave Technol.

Laser Photon. Rev.

C.-B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, “Spectral line-by-line shaping for optical and microwave arbitrary waveform generations,” Laser Photon. Rev. 2(4), 227–248 (2008).
[CrossRef]

Nat. Photonics

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

X. Zhou, X. P. Zheng, and B. K. Zhou, “Optical arbitrary waveform generator applicable to pulse generation and chromatic dispersion compensation of a remote UWB over fiber system,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2011), paper We.10.P1.121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of OAWG (MZM: Mach-Zehnder Modulator, SMF: Single-mode Fiber, EDFA: Erbium-doped Optical Fiber Amplifier, PC: Polarization controller, PD: photodiode).

Fig. 2
Fig. 2

Simulation results: (b), (d), (f) and (h) are target waveform, received signal without pre-compensation, transmitted signal with pre-compensation and received signal with pre-compensation respectively.(a), (c), (e) and (g) are corresponding spectrum of (b), (d), (f) and (h) respectively (blue square: normalized magnitude spectrum of target signals; red asterisk: phase spectrum of target signals).

Fig. 3
Fig. 3

(a) and (c) are generated monocycle and doublet pulse respectively(blue and solid line: generated waveform; red and dashed line: target waveform); (b) and (d) are corresponding spectrum of (a) and (c) respectively.

Fig. 4
Fig. 4

Monocycle: (a), (b) and (c) are received signals after transmission over 20-km, 50-km 100-km SMF respectively(black: origin signal; blue: received signals with pre-compensation; red: received signals without pre-compensation); (d), (e) and (f) are transmitted signals with pre-compensation before transmission over 20km, 50km 100km SMF respectively.

Fig. 5
Fig. 5

Doublet: (a), (b) and (c) are received signals after transmission over 20-km, 50-km 100-km SMF respectively(black: origin signal; blue: received signals with pre-compensation; red: received signals without pre-compensation); (d), (e) and (f) are transmitted signals with pre-compensation before transmission over 20-km, 50-km 100-km SMF respectively.

Fig. 6
Fig. 6

Monocycle: (a), (b) and (c) spectrum of target signals and received signals with pre-compensation after transmission over 20-km, 50-km 100-km SMF respectively.(blue and square: normalized magnitude spectrum of target signals; blue and diamond: normalized magnitude spectrum of received signals; red and circle: phase spectrum of target signals; red and cross: phase spectrum of received signals).

Fig. 7
Fig. 7

Doublet: (a), (b) and (c) spectrum of target signals and received signals with pre-compensation after transmission over 20-km, 50-km 100-km SMF respectively.(blue and square: normalized magnitude spectrum of target signals; blue and diamond: normalized magnitude spectrum of received signals; red and circle: phase spectrum of target signals; red and cross: phase spectrum of received signals).

Fig. 8
Fig. 8

(a) and (b) are cross correlation coefficient (CCC) between the received monocycle/doublet signals and the origin waveform respectively (square: CCC with compensation; circle: CCC without compensation).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E out ( t )= n=1 N J 1 2 ( β n π) I n exp(j(2π×2 f n t+2 φ n ))
f s ( t )=L n=1 N F n α n exp[4πj(nft+ 2DL f 2 (n1) λ n 2 c )]
H s ( f ) 1 =A n=1 N 1 α n exp[ 8πjDL f 2 (n1) λ n 2 c )] δ(f2 f n )
f p ( t )= F 1 (S(f)× H s ( f ) 1 )

Metrics