## Abstract

We analyzed the mechanism of the interplay between PDL and fiber nonlinear effects in 112Gb/s DP-QPSK systems and showed that PDL can generate large data-dependent optical peak power variations that can worsen nonlinear tolerance and cause an additional 1.4dB Q-penalty.

© 2011 OSA

Full Article |

PDF Article

**OSA Recommended Articles**
### Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$U(z,t)=\left|\begin{array}{c}Ux\\ Uy\end{array}\right|=\left|\begin{array}{cc}\mathrm{cos}\theta & -\mathrm{sin}\theta \\ \mathrm{sin}\theta & \mathrm{cos}\theta \end{array}\right|\cdot \left|\begin{array}{cc}\sqrt{1+\eta}& 0\\ 0& \sqrt{1-\eta}\end{array}\right|\cdot \left|\begin{array}{cc}\mathrm{cos}\theta & \mathrm{sin}\theta \\ -\mathrm{sin}\theta & \mathrm{cos}\theta \end{array}\right|\cdot \left|\begin{array}{c}Ex\\ Ey\end{array}\right|$$
(2)
$${\left|U\right|}^{2}={\left|Ex\right|}^{2}+{\left|Ey\right|}^{2}+\eta \cdot \mathrm{cos}2\theta \cdot ({\left|Ex\right|}^{2}-{\left|Ey\right|}^{2})+2\cdot \eta \cdot \mathrm{sin}2\theta \cdot \left|Ex\right|\cdot \left|Ey\right|$$
(3)
$$\frac{\partial U}{\partial z}+j\frac{{\beta}_{2}}{2}\frac{{\partial}^{2}U}{{\partial}^{2}t}-j\frac{8}{9}\gamma {\left|U\right|}^{2}U=0,$$