Abstract

A cw-244-nm-Ar+ laser was used to fabricate Bragg gratings in pristine and H2-loaded Bi-Al-SiO2 optical fibers with index changes as high as 3.6 × 10−4 and 19.3 × 10−4, respectively. For comparison, fiber Bragg gratings in pristine and H2-loaded SMF-28e showed index changes of 13.6 × 10−4 and 63.3 × 10−4. Continuous isochronal thermal annealing revealed higher thermal stability for the H2-loaded Bi-Al-SiO2 fiber compared to the pristine one. The SMF-28e fibers, with and without hydrogen, were more stable than the Bi-Al-SiO2 fibers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [CrossRef]
  2. M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-Doped Optical Fiber Amplifier for 1430 nm Band Pumped by 1310 nm Laser Diode,” in OFC 2011 Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2011), OMH1.
  3. C. Ban, H. G. Limberger, V. Mashinsky, V. Dvoyrin, and E. Dianov, “UV-Photosensitivity of Germanium-free Bi-Al Silica Fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides BGPP: OSA Topical Meeting, 2010), BWD3.
  4. G. Violakis, H. G. Limberger, V. Mashinsky, and E. Dianov, “Strong fiber Bragg gratings in Bi-Al co-doped H2-loaded optical fibers using CW-Ar+ laser,” in OFC 2011 Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) 2011), OTuC3.
  5. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
    [CrossRef]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [CrossRef]
  7. C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared Luminescence Enhancement by UV-Irradiation of H2-loaded Bi-Al-doped Fiber,” in ECOC 2009 – 35th European Conference and Exhibition on Optical Communication, 2009), paper 6.1.5.
  8. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
    [CrossRef]
  9. J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
    [CrossRef]
  10. S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects ” in BGPP'03, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting, (OSA, 2003), MD31.
  11. P. A. Redhead, “Thermal-Desorption of Gases,” Vacuum 12(4), 203–211 (1962).
    [CrossRef]
  12. G. Violakis, H. G. Limberger, V. Mashinsky, and E. Dianov, “Fabrication and thermal decay of fiber Bragg gratings in Bi-Al co-doped optical fibers,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC,2011), Tu.3.LeCervin.2.
  13. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt. 40(16), 2632–2642 (2001).
    [CrossRef] [PubMed]
  14. P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
    [CrossRef]
  15. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask,” Opt. Lett. 29(18), 2127–2129 (2004).
    [CrossRef] [PubMed]

2010 (2)

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
[CrossRef]

2009 (1)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

2008 (1)

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

2004 (1)

2001 (1)

2000 (1)

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[CrossRef]

1962 (1)

P. A. Redhead, “Thermal-Desorption of Gases,” Vacuum 12(4), 203–211 (1962).
[CrossRef]

Bufetov, I. A.

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Dianov, E. M.

P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
[CrossRef]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

Douay, M.

Dvoyrin, V. V.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[CrossRef]

Gnusin, P. I.

P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
[CrossRef]

Grobnic, D.

Hidayat, A.

Kherbouche, F.

Kristensen, M.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[CrossRef]

Limberger, H. G.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

Mashinsky, V. M.

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

Medvedkov, O. I.

P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
[CrossRef]

Mihailov, S. J.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[CrossRef]

Niay, P.

Pedersen, J. E.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[CrossRef]

Poumellec, B.

Rathje, J.

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[CrossRef]

Redhead, P. A.

P. A. Redhead, “Thermal-Desorption of Gases,” Vacuum 12(4), 203–211 (1962).
[CrossRef]

Riant, I.

Smelser, C. W.

Vasil'ev, S. A.

P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
[CrossRef]

Violakis, G.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

Wang, Q.

Appl. Opt. (1)

Electron. Lett. (1)

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

J. Appl. Phys. (2)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[CrossRef]

J. Rathje, M. Kristensen, and J. E. Pedersen, “Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,” J. Appl. Phys. 88(2), 1050–1055 (2000).
[CrossRef]

Laser Phys. Lett. (1)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Opt. Lett. (1)

Quantum Electron. (1)

P. I. Gnusin, S. A. Vasil'ev, O. I. Medvedkov, and E. M. Dianov, “Reversible changes in the reflectivity of different types of fibre Bragg gratings,” Quantum Electron. 40(10), 879–886 (2010).
[CrossRef]

Vacuum (1)

P. A. Redhead, “Thermal-Desorption of Gases,” Vacuum 12(4), 203–211 (1962).
[CrossRef]

Other (6)

G. Violakis, H. G. Limberger, V. Mashinsky, and E. Dianov, “Fabrication and thermal decay of fiber Bragg gratings in Bi-Al co-doped optical fibers,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC,2011), Tu.3.LeCervin.2.

M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, “Bismuth-Doped Optical Fiber Amplifier for 1430 nm Band Pumped by 1310 nm Laser Diode,” in OFC 2011 Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) (Optical Society of America, Washington, DC, 2011), OMH1.

C. Ban, H. G. Limberger, V. Mashinsky, V. Dvoyrin, and E. Dianov, “UV-Photosensitivity of Germanium-free Bi-Al Silica Fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides BGPP: OSA Topical Meeting, 2010), BWD3.

G. Violakis, H. G. Limberger, V. Mashinsky, and E. Dianov, “Strong fiber Bragg gratings in Bi-Al co-doped H2-loaded optical fibers using CW-Ar+ laser,” in OFC 2011 Optical Fiber Communication Conference and Exposition (OFC) and National Fiber Optic Engineers Conference (NFOEC) 2011), OTuC3.

S. A. Vasiliev, O. I. Medvedkov, A. S. Bozhkov, and E. M. Dianov, “Annealing of UV-induced fiber gratings written in Ge-doped fibers: investigation of dose and strain effects ” in BGPP'03, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides: OSA Topical Meeting, (OSA, 2003), MD31.

C. Ban, L. I. Bulatov, V. V. Dvoyrin, V. M. Mashinsky, H. G. Limberger, and E. M. Dianov, “Infrared Luminescence Enhancement by UV-Irradiation of H2-loaded Bi-Al-doped Fiber,” in ECOC 2009 – 35th European Conference and Exhibition on Optical Communication, 2009), paper 6.1.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Refractive index changes as a function of exposure dose for Bi-Al co-doped fiber (Bi#10) (left) and SMF-28e (right) irradiated with ~500 W/cm2 using 244-nm cw Ar+ laser irradiations. Insets show Bragg grating reflectivity at the end of the exposure.

Fig. 2
Fig. 2

Temperature decays of three similar gratings inscribed in Bi-Al silica fiber (left) and SMF-28e (right) using three different heating rates.

Fig. 3
Fig. 3

Normalized grating strength (left) and defect energy density (right) versus demarcation energy.

Fig. 4
Fig. 4

Refractive index changes as a function of exposure dose for H2-loaded Bi-Al co-doped fiber (Bi#10) (left) and SMF-28e (right) irradiated with ~500 W/cm2 using 244-nm cw-Ar+ laser irradiations. FBG reflection spectra at the end of the exposure are shown as insets.

Fig. 5
Fig. 5

Temperature decays of three similar gratings inscribed in H2-loaded Bi-Al silica fiber (left) and H2-loaded SMF-28e (right) using three different heating rates. The annealing data of Smelser et al. are also for high refractive index FBG fabricated using a cw-Ar+ laser [15].

Tables (1)

Tables Icon

Table 1 Refractive Index Changes and Thermal Decay Parameters (First-order Reaction Kinetics)

Metrics