Abstract

We select the optimum design parameters for real-time optical OFDM transceivers running at 25 Gb/s and analyze power consumption and ASIC footprint for a variety of configurations based on synthesis for a 65nm standard-cell library. Experiments quantify the effects of modulation format and the number of IFFT/FFT points used in transceivers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [CrossRef]
  2. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
    [CrossRef]
  3. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
    [CrossRef] [PubMed]
  4. R. Schmogrow, M. Winter, B. Nebendahl, D. Hillerkuss, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “101.5 Gbit/s real-time OFDM transmitter with 16QAM modulated subcarriers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWE5.
  5. R. Bouziane, P. Milder, R. Koutsoyannis, Y. Benlachtar, C. R. Berger, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Design studies for an ASIC implementation of an optical OFDM transceiver,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), (IEEE, 2010), paper Tu.5.A.4.
  6. P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath representation and manipulation for implementing DSP transforms,” in Proceedings of the 45th annual Design Automation Conference (ACM, 2008), pp. 385–390.

2010

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

2009

Benlachtar, Y.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Bouziane, R.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Chen, S.

Giddings, R. P.

Glick, M.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Hoe, J. C.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Hugues-Salas, E.

Jin, X. Q.

Killey, R. I.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Koutsoyannis, R.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Ma, Y.

Milder, P.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Püschel, M.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Shieh, W.

Tang, J. M.

Tang, Y.

Watts, P. M.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

Yang, Q.

IEEE J. Sel. Top. Quantum Electron.

Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Real-time digital signal processing for the generation of optical orthogonal frequency-division-multiplexed signals,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1235–1244 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

R. Schmogrow, M. Winter, B. Nebendahl, D. Hillerkuss, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “101.5 Gbit/s real-time OFDM transmitter with 16QAM modulated subcarriers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWE5.

R. Bouziane, P. Milder, R. Koutsoyannis, Y. Benlachtar, C. R. Berger, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Design studies for an ASIC implementation of an optical OFDM transceiver,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC), (IEEE, 2010), paper Tu.5.A.4.

P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath representation and manipulation for implementing DSP transforms,” in Proceedings of the 45th annual Design Automation Conference (ACM, 2008), pp. 385–390.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a): Transmitter DSP design. (b): Receiver DSP design. (CP – cyclic prefix, P/S – parallel-to-serial, S/P – serial-to-parallel,) The dark grey boxes are included in synthesized ASIC designs, while the light grey boxes are used in simulation only.

Fig. 2
Fig. 2

Error vector magnitude (EVM) vs. IFFT bit precision (left) and FFT bit precision (right) assuming 16-QAM modulation. Each line represents a different DAC (left) or ADC (right) resolution, from 3 to 12 bits.

Fig. 3
Fig. 3

Power (y-axis) and area (x-axis) results of transmitters (left) and receivers (right) for different modulation formats.

Fig. 4
Fig. 4

Power (y-axis) and area (x-axis) results of QPSK-based OFDM transmitters (left) and receivers (right) for different IFFT sizes.

Fig. 5
Fig. 5

Post-synthesis simulation environment.

Fig. 6
Fig. 6

Optical transmission simulation results: (left) EVM per subcarrier and (right) the received signal constellations.

Tables (1)

Tables Icon

Table 1 Different Configurations for a 25Gb/s System and Their Requirements.

Metrics