Abstract

We propose the use of pilot-aided (PA) transmission, enabled by single-sideband-subcarrier modulation of both quadratures in the DSP-domain, in single-carrier systems to mitigate jointly laser phase noise and fiber nonlinearity. In addition to tolerance against laser phase noise, we show that the proposed scheme also improves the nonlinear tolerance of both polarization-division-multiplexed (PDM) QPSK and 16-QAM coherent transmission systems by increasing the maximum allowable launch power by 1 dB and 1.5 dB, respectively. The improved nonlinear performance of both systems also manifests itself as an increase in the maximum reach by 720 km and 480 km, respectively. Finally, when digital-to-analog converters (DACs) with lower bit resolutions are used at the transmitter, PA transmission is shown to preserve the same performance improvement over the non-PA case.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [CrossRef]
  2. S. J. Savory, “Coherent detection - why is it back?” in proceedings of the 20th Annual Meeting of IEEE Lasers and Electro-Optics Society,(Institute of Electrical and Electronics Engineers 2007), paper TuH1.
  3. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  4. E. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
    [CrossRef]
  5. S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [CrossRef]
  6. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
    [CrossRef]
  7. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  8. K. Roberts, M. O'Sullivan, W. Kuang-Tsan, H. Sun, A. Awadalla, D. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol. 27(16), 3546–3559 (2009).
    [CrossRef]
  9. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  10. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1(2), 279–307 (2009).
    [CrossRef]
  11. Y. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory,” in proceedings of IEEE Solid-State Circuits Conference (ISSCC), pp.194–196, 20–24 Feb. 2011.
  12. I. Dedic, “56Gs/s ADC: Enabling 100GbE,” in proceedings of Optical Fiber Communication, collocated National Fiber Optic Engineers Conference,(OFC/NFOEC), pp.1–3, 21–25 March 2010.
  13. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
    [CrossRef]
  14. T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [CrossRef]
  15. P. J. Winzer, A. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1200 km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in proceedings of European Conference and Exhibition on Optical Communication (ECOC 2010), paper PD2.2.
  16. X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s,50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB3.
  17. A. H. Gnauck, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, and D. W. Peckham, “Generation and transmission of 21.4-Gbaud PDM 64-QAM using a high-power DAC driving a single I/Q modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB2.
  18. T. Pfau and R. Noé, “Phase-Noise-Tolerant Two-Stage Carrier Recovery Concept for Higher Order QAM Formats,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1210–1216 (2010).
    [CrossRef]
  19. X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers With M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
    [CrossRef]
  20. Q. Zhuge, C. Chen, and D. V. Plant, “Low Computation Complexity Two-Stage Feedforward Carrier Recovery Algorithm for M-QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMJ5.
  21. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  22. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [CrossRef]
  23. S. L. Jansen, I. Morita, T. C. W. Schenk, N. Takeda, and H. Tanaka, “Coherent Optical 25.8-Gb/s OFDM Transmission Over 4160-km SSMF,” J. Lightwave Technol. 26(1), 6–15 (2008).
    [CrossRef]
  24. B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-Based Nonlinearity Compensation for Optical OFDM Systems,” in Proc. European Conference on Optical Communications (ECOC)2010, paper Tu.4.A.6.
  25. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  26. I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
    [CrossRef]

2010 (7)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

T. Pfau and R. Noé, “Phase-Noise-Tolerant Two-Stage Carrier Recovery Concept for Higher Order QAM Formats,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1210–1216 (2010).
[CrossRef]

X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers With M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

E. Ip and J. M. Kahn, “Fiber impairment compensation using coherent detection and digital signal processing,” J. Lightwave Technol. 28(4), 502–519 (2010).
[CrossRef]

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[CrossRef]

2009 (4)

2008 (4)

2007 (1)

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Awadalla, A.

Barros, D. J.

Essiambre, R. J.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Foschini, G. J.

Goebel, B.

Hoffmann, S.

Ip, E.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Jansen, S. L.

Kahn, J. M.

Kramer, G.

Krause, D.

Kuang-Tsan, W.

Laperle, C.

Lau, A. P.

Li, G.

Morita, I.

Noe, R.

Noé, R.

T. Pfau and R. Noé, “Phase-Noise-Tolerant Two-Stage Carrier Recovery Concept for Higher Order QAM Formats,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1210–1216 (2010).
[CrossRef]

O'Sullivan, M.

Pfau, T.

T. Pfau and R. Noé, “Phase-Noise-Tolerant Two-Stage Carrier Recovery Concept for Higher Order QAM Formats,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1210–1216 (2010).
[CrossRef]

T. Pfau, S. Hoffmann, and R. Noe, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
[CrossRef]

Roberts, K.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

Schenk, T. C. W.

Sun, H.

Takeda, N.

Tanaka, H.

Taylor, M. G.

M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Winzer, P. J.

Zhou, X.

X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers With M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

IEEE Commun. Mag. (1)

P. J. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Pfau and R. Noé, “Phase-Noise-Tolerant Two-Stage Carrier Recovery Concept for Higher Order QAM Formats,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1210–1216 (2010).
[CrossRef]

S. J. Savory, “Digital coherent optical receivers: algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

X. Zhou, “An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers With M -QAM Modulation Format,” IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (8)

Opt. Express (2)

Other (8)

B. Inan, S. Randel, S. L. Jansen, A. Lobato, S. Adhikari, and N. Hanik, “Pilot-tone-Based Nonlinearity Compensation for Optical OFDM Systems,” in Proc. European Conference on Optical Communications (ECOC)2010, paper Tu.4.A.6.

Q. Zhuge, C. Chen, and D. V. Plant, “Low Computation Complexity Two-Stage Feedforward Carrier Recovery Algorithm for M-QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMJ5.

S. J. Savory, “Coherent detection - why is it back?” in proceedings of the 20th Annual Meeting of IEEE Lasers and Electro-Optics Society,(Institute of Electrical and Electronics Engineers 2007), paper TuH1.

Y. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, and P. Schvan, “A 56GS/S 6b DAC in 65nm CMOS with 256×6b memory,” in proceedings of IEEE Solid-State Circuits Conference (ISSCC), pp.194–196, 20–24 Feb. 2011.

I. Dedic, “56Gs/s ADC: Enabling 100GbE,” in proceedings of Optical Fiber Communication, collocated National Fiber Optic Engineers Conference,(OFC/NFOEC), pp.1–3, 21–25 March 2010.

P. J. Winzer, A. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1200 km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in proceedings of European Conference and Exhibition on Optical Communication (ECOC 2010), paper PD2.2.

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s,50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB3.

A. H. Gnauck, P. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, and D. W. Peckham, “Generation and transmission of 21.4-Gbaud PDM 64-QAM using a high-power DAC driving a single I/Q modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

DSP-based coherent transmission system (PBS: Polarization Beam Splitter, PBC: Polarization Beam Combiner).

Fig. 2
Fig. 2

DSP tasks for PA transmission system per polarization in: a) Tx side, and b) Rx side.

Fig. 3
Fig. 3

Spectrum of I-component on X-Pol. of a 28 Gbaud PDM-QPSK signal a) At Tx before SSB together with the spectrum of a 2nd order super-Gaussian 50 GHz MUX (dashed curve), b) At Tx after SSB and pilot insertion with fsc = 1 GHz and PSR = −16 dB, c) Zoomed version of pilot spectral gap at Tx, d) At Rx after transmission over 1600 km SSMF, launch power = 4 dBm and OSNR = 14 dB, e) Zoomed version of pilot spectral gap at Rx together with a Gaussian LPF with BLPF = 50 MHz.

Fig. 4
Fig. 4

Required OSNR versus launch power to achieve a BER = 3.8 × 10−3 assuming noise loading at Rx side for: a) 28Gbaud PDM-QPSK system with L = 1600 km, and b) 14 Gbaud PDM 16-QAM system with L = 1200 km.

Fig. 5
Fig. 5

Maximum system reach versus launch power to achieve a BER = 3.8 × 10−3 assuming the noise figure of inline EDFAs = 7 dB and no noise loading at Rx side for: a) 28 Gbaud PDM-QPSK system, and b) 14 Gbaud PDM 16-QAM system.

Fig. 6
Fig. 6

Effect of finite DAC resolution on required OSNR versus launch power to achieve a BER = 3.8 × 10−3 assuming noise loading at Rx side for 14 Gbaud PDM 16-QAM system with L = 1200 km.

Metrics