Abstract

The phase noise characteristics and laser stabilization time of a tunable laser under both static and fast switching operation is characterized using a dynamic linewidth measurement technique which employs a digital intradyne coherent receiver. The measurement technique utilizes a time domain frequency estimator to characterize the laser phase noise and also analyses the separate noise contributions to the overall laser linewidth. The performance of the measurement technique is validated using a phase noise emulator and a low linewidth (10kHz) external cavity laser. The dynamic stabilization time, in terms of instantaneous frequency and linewidth, of a fast switching tunable DSDBR laser is subsequently investigated and we demonstrate that a minimum linewidth for a DSDBR laser can be realized within 50ns of a wavelength switching event in a 5-channel 50GHz spaced WDM system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B.C. Thomsen, R. Maher, D.S. Millar, and S.J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK,” in European Conference on Optical Communications, (ECOC2011), paper Mo.2.A.5.
  2. M.G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. of Lightwave Technol. 27, 901–914 (2009).
    [CrossRef]
  3. A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
    [CrossRef]
  4. K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.
  5. A.K. Mishra, A.D. Ellis, L.P. Barry, and T. Farrell, “Time resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper OTuC4.
  6. T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
    [CrossRef]
  7. K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in Optical Fiber Communication Conference, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper OML3.
  8. Z. Zan and A.J. Lowery, “Experimental demonstration of a flexible and stable semiconductor laser linewidth emulator,” Opt. Express 18, 13880–13885 (2010).
    [CrossRef] [PubMed]
  9. R. Maher and B.C. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” in European Conference on Optical Communications, (ECOC2011), paper We.10.P1.45.
  10. A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).
  11. M.C. Amann and S. Illek, “Linewidth broadening by 1/f noise in wavelength-tunable laser diodes,” J. of Appl. Phys. Lett. 70, 1512–1514 (1997).
    [CrossRef]
  12. M.C. Amann and R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
    [CrossRef]

2010

2009

M.G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. of Lightwave Technol. 27, 901–914 (2009).
[CrossRef]

A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
[CrossRef]

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

1997

M.C. Amann and S. Illek, “Linewidth broadening by 1/f noise in wavelength-tunable laser diodes,” J. of Appl. Phys. Lett. 70, 1512–1514 (1997).
[CrossRef]

1996

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

1990

M.C. Amann and R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

Amann, M.C.

M.C. Amann and S. Illek, “Linewidth broadening by 1/f noise in wavelength-tunable laser diodes,” J. of Appl. Phys. Lett. 70, 1512–1514 (1997).
[CrossRef]

M.C. Amann and R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

Anandarajah, P.M.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

Barry, L.P.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

A.K. Mishra, A.D. Ellis, L.P. Barry, and T. Farrell, “Time resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper OTuC4.

Barton, E.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Bayvel, P.

A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
[CrossRef]

Bianciotto, A.

A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
[CrossRef]

Busico, G.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Carter, A.C.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Clarici, G.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Duck, J.P.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Duthel, T.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Ellis, A.D.

A.K. Mishra, A.D. Ellis, L.P. Barry, and T. Farrell, “Time resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper OTuC4.

Farrell, T.

A.K. Mishra, A.D. Ellis, L.P. Barry, and T. Farrell, “Time resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper OTuC4.

Fludger, C.R.S.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Geyer, J.S.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Igarashi, K.

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in Optical Fiber Communication Conference, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper OML3.

Illek, S.

M.C. Amann and S. Illek, “Linewidth broadening by 1/f noise in wavelength-tunable laser diodes,” J. of Appl. Phys. Lett. 70, 1512–1514 (1997).
[CrossRef]

Kikuchi, K.

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in Optical Fiber Communication Conference, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper OML3.

Lowery, A.J.

Maher, R.

B.C. Thomsen, R. Maher, D.S. Millar, and S.J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK,” in European Conference on Optical Communications, (ECOC2011), paper Mo.2.A.5.

R. Maher and B.C. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” in European Conference on Optical Communications, (ECOC2011), paper We.10.P1.45.

Millar, D.S.

B.C. Thomsen, R. Maher, D.S. Millar, and S.J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK,” in European Conference on Optical Communications, (ECOC2011), paper Mo.2.A.5.

Mishra, A.K.

A.K. Mishra, A.D. Ellis, L.P. Barry, and T. Farrell, “Time resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper OTuC4.

Ponnampalam, L.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Puttnam, B.J.

A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
[CrossRef]

Reid, D.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

Reid, D.C.J.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Robbins, D.J.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Savory, S.J.

B.C. Thomsen, R. Maher, D.S. Millar, and S.J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK,” in European Conference on Optical Communications, (ECOC2011), paper Mo.2.A.5.

Schimpe, R.

M.C. Amann and R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

Schulien, C.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Shi, K.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

Smyth, F.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

Taylor, M.G.

M.G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. of Lightwave Technol. 27, 901–914 (2009).
[CrossRef]

Thomsen, B.

A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
[CrossRef]

Thomsen, B.C.

R. Maher and B.C. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” in European Conference on Optical Communications, (ECOC2011), paper We.10.P1.45.

B.C. Thomsen, R. Maher, D.S. Millar, and S.J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK,” in European Conference on Optical Communications, (ECOC2011), paper Mo.2.A.5.

Wale, M.J.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Ward, A.J.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Whitbread, N.D.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Wiese, S.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Williams, P.J.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Yu, Y.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

Zan, Z.

Electron. Lett.

M.C. Amann and R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

J. of Appl. Phys. Lett.

M.C. Amann and S. Illek, “Linewidth broadening by 1/f noise in wavelength-tunable laser diodes,” J. of Appl. Phys. Lett. 70, 1512–1514 (1997).
[CrossRef]

J. of Lightwave Technol.

M.G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. of Lightwave Technol. 27, 901–914 (2009).
[CrossRef]

A. Bianciotto, B.J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. of Lightwave Technol. 27, 2117–2124 (2009).
[CrossRef]

J. of Quant. Electron.

A.J. Ward, D.J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J.P. Duck, N.D. Whitbread, P.J. Williams, D.C.J. Reid, A.C. Carter, and M.J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” J. of Quant. Electron. 11, 149–156 (1996).

Opt. Express

Photon. Technol. Lett.

T. Duthel, G. Clarici, C.R.S. Fludger, J.S. Geyer, C. Schulien, and S. Wiese, “Laser linewidth estimation by means of coherent detection,” Photon. Technol. Lett. 21, 1568–1570 (2009).
[CrossRef]

Other

K. Kikuchi and K. Igarashi, “Characterization of semiconductor-laser phase noise with digital coherent receivers,” in Optical Fiber Communication Conference, 2010 OSA Technical Digest Series (Optical Society of America, 2010), paper OML3.

R. Maher and B.C. Thomsen, “Dynamic linewidth measurement technique using digital intradyne coherent receivers,” in European Conference on Optical Communications, (ECOC2011), paper We.10.P1.45.

B.C. Thomsen, R. Maher, D.S. Millar, and S.J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK,” in European Conference on Optical Communications, (ECOC2011), paper Mo.2.A.5.

K. Shi, P.M. Anandarajah, D. Reid, F. Smyth, L.P. Barry, and Y. Yu, “SG-DBR tunable laser linewidth and its impact on advanced modulation format transmission,” in European Conference on Lasers and Electro-Optics2009.

A.K. Mishra, A.D. Ellis, L.P. Barry, and T. Farrell, “Time resolved linewidth measurements of a wavelength switched SG-DBR laser for optical packet switched networks,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest Series (Optical Society of America, 2008), paper OTuC4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Linewidth characterization experimental setup and (b) power spectral density of coherently received signal complex field with a Lorentzian fit.

Fig. 2
Fig. 2

(a) Measured linewidth as a function of the theoretical value and (b) measured linewidth as a function of the measurement bandwidth.

Fig. 3
Fig. 3

(a) Power spectral density of the complex field and amplitude noise and (b) FM noise spectrum.

Fig. 4
Fig. 4

(a) Static linewidth characterization experimental setup and (b) power spectral density of the received complex field and the corresponding Lorentzian fit.

Fig. 5
Fig. 5

FM noise power spectral density.

Fig. 6
Fig. 6

(a) Dynamic linewidth characterization experimental setup and (b) percentage variation of the simulated 2MHz linewidth as a function of the bus width.

Fig. 7
Fig. 7

(a) Instantaneous frequency variation and dynamic linewidth as the tunable laser switched from channel 1 to channel 2 and (b) single switch from channel 1 to channel 2.

Fig. 8
Fig. 8

(a) Dynamic linewidth characterization experimental setup and (b) instantaneous frequency variation and dynamic linewidth as the tunable laser switched sequentially from channel 1 to channel 5.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( n ) = 2 π Δ v d t 0 n X ( n )
f ( k ) = 1 2 π d t arg { x in [ k ] x i n * ( k 1 ) }
Δ v = 2 π d t N w i n 1 1 N win { ( f ( k ) μ ) 2 }

Metrics