Abstract

ABC (Auto Bias Control) technique for QAM (Quadrature Amplitude Modulation) transmitter is demonstrated. 16-QAM (10G baud) is generated and controlled using a single IQ modulator and asymmetric bias dithering technique. Measured penalty is 0.3dB.

© 2011 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Auto bias control and bias hold circuit for IQ-modulator in flexible optical QAM transmitter with Nyquist filtering

Hiroto Kawakami, Takayuki Kobayashi, Mitsuteru Yoshida, Tomoyoshi Kataoka, and Yutaka Miyamoto
Opt. Express 22(23) 28163-28168 (2014)

Auto bias control technique for optical OFDM transmitter with bias dithering

Tao Gui, Cai Li, Qi Yang, Xiao Xiao, Linghen Meng, Chao Li, Xingwen Yi, Chao Jin, and Zhaohui Li
Opt. Express 21(5) 5833-5841 (2013)

Experimental demonstration of robustness and accuracy of a DLI-based OSNR monitor under changes in the transmitter and link for different modulation formats and baud rates

Ahmed Almaiman, Mohammad Reza Chitgarha, Wajih Daab, Morteza Ziyadi, Amirhossein Mohajerin-Ariaei, Salman Khaleghi, Moshe Willner, Vijay Vusirikala, Xiaoxue Zhao, Dan Kilper, Loukas Paraschis, Atiyah Ahsan, Michael Wang, Keren Bergman, Moshe Tur, Joseph D. Touch, and Alan E. Willner
Opt. Lett. 40(9) 2012-2015 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11x171Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in Proceedings of ECOC 2010, We.8.C.
  2. I. Morohashi, M. Sudo, T. Sakamoto, A. Kanno, A. Chiba, J. Ichikawa, and T. Kawanishi, “16 QAM synthesis by angular superposition of polarization using dual-polarization QPSK modulator,” in Proceedings of ECOC 2010, We.3.14.
  3. T. Yamada, Y. Sakamaki, T. Saida, A. Kaneko, A. Sano, and Y. Miyamoto, “86-Gbit/s differential quadrature phase-shift-keying modulator using hybrid assembly technique with planar lightwave circuit and LiNbO 3 devices,” in Proceedings of LEOS 2006, ThDD4.
  4. H. Kawakami, E. Yoshida, and Y. Miyamoto, “Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,” Electron. Lett. 46(6), 430–431 (2010).
    [Crossref]
  5. H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for QPSK modulator with asymmetric bias dithering,” in Proceedings of OECC 2010, 8B2–4.
  6. P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photon. Technol. Lett. 22(14), 1030–1032 (2010).
    [Crossref]
  7. T. Yoshida, T. Sugihara, K. Uto, H. Bessho, K. Sawada, K. Ishida, K. Shimizu, and T. Mizuochi, “A study on automatic bias control for arbitrary optical signal generation by dual-parallel Mach-Zehnder modulator,” in Proceedings of ECOC 2010, Tu.3. A. 6.
  8. H. G. Choi, Y. Takushima, H. Y. Choi, J. H. Chang, and Y. C. Chung, “Modulation-format-free bias control technique for MZ modulator based on differential phasor monitor,” in Proceedings of OFC/NFOEC 2011, JWA33.

2010 (2)

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,” Electron. Lett. 46(6), 430–431 (2010).
[Crossref]

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photon. Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

Cho, P. S.

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photon. Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

Kawakami, H.

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,” Electron. Lett. 46(6), 430–431 (2010).
[Crossref]

Miyamoto, Y.

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,” Electron. Lett. 46(6), 430–431 (2010).
[Crossref]

Nazarathy, M.

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photon. Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

Yoshida, E.

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,” Electron. Lett. 46(6), 430–431 (2010).
[Crossref]

Electron. Lett. (1)

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator,” Electron. Lett. 46(6), 430–431 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photon. Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

Other (6)

T. Yoshida, T. Sugihara, K. Uto, H. Bessho, K. Sawada, K. Ishida, K. Shimizu, and T. Mizuochi, “A study on automatic bias control for arbitrary optical signal generation by dual-parallel Mach-Zehnder modulator,” in Proceedings of ECOC 2010, Tu.3. A. 6.

H. G. Choi, Y. Takushima, H. Y. Choi, J. H. Chang, and Y. C. Chung, “Modulation-format-free bias control technique for MZ modulator based on differential phasor monitor,” in Proceedings of OFC/NFOEC 2011, JWA33.

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for QPSK modulator with asymmetric bias dithering,” in Proceedings of OECC 2010, 8B2–4.

S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11x171Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in Proceedings of ECOC 2010, We.8.C.

I. Morohashi, M. Sudo, T. Sakamoto, A. Kanno, A. Chiba, J. Ichikawa, and T. Kawanishi, “16 QAM synthesis by angular superposition of polarization using dual-polarization QPSK modulator,” in Proceedings of ECOC 2010, We.3.14.

T. Yamada, Y. Sakamaki, T. Saida, A. Kaneko, A. Sano, and Y. Miyamoto, “86-Gbit/s differential quadrature phase-shift-keying modulator using hybrid assembly technique with planar lightwave circuit and LiNbO 3 devices,” in Proceedings of LEOS 2006, ThDD4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Construction of 16-QAM transmitter for experiment.

Fig. 2
Fig. 2

Transfer characteristic of PMk (k = I, Q).

Fig. 3
Fig. 3

Total optical power vs. drift of BIASk (k = I, Q). Red: D = −0.006, Blue: D = + 0.036.

Fig. 4
Fig. 4

Schematic diagram of generated asymmetric constellation maps.

Fig. 5
Fig. 5

Measured Q factor vs. offset signal.

Fig. 6
Fig. 6

Measured constellations with and without offset signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P total L=1 4 M=1 4 ( | E IL | 2 + | E QM | 2 ).
Dcos( V k1 V π π )+cos( V k2 V π π )=cos( V k3 V π π )+cos( V k4 V π π )
d d V drift P total sin( V drift V π π )×D
P total P 1 + P 2 P 1 = L=1 2 M=1 2 (| E IL | 2 +| E QM | 2 +2| E IL || E QM |cosϕ) + L=3 4 M=3 4 (| E IL | 2 +| E QM | 2 +2| E IL || E QM |cosϕ) P 2 = L=1 2 M=3 4 (| E IL | 2 +| E QM | 2 2| E IL || E QM |cosϕ) + L=3 4 M=1 2 (| E IL | 2 +| E QM | 2 2| E IL || E QM |cosϕ)

Metrics