Abstract

A sequential optical frequency-division multiplexing technique using cross-phase modulation in fibers with exactly frequency-controlled optical subcarrier signals is proposed and demonstrated. 12 channels of 10-Gb/s ASK/DPSK signals with 20-GHz exact channel spacing are successfully multiplexed all-optically at 12 stages with 1-km intervals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, Optical Fiber Communications V (Academic Press, 2008), Vol. B, Chap. 2.
  2. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-PDPA9
  3. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-21-10-2145 .
    [CrossRef]
  4. T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300-400 GHz bands,” in Proceeding of International Topical Meeting on Microwave Photonics, 2009, paper Th2.3 (2009).
  5. T. Kato, R. Okabe, R. Ludwig, C. Schmidt-Langhorst, C. Schubert, and S. Watanabe, “All-optical THz-band frequency multiplexing on a single optical carrier using fiber cross-phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThC5
  6. S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. ID 2111358 (to be published).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2000).
  8. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
    [CrossRef]
  9. H. Takesue, T. Horiguchi, and T. Kobayashi, “Numerical simulation of a lightwave synthesized frequency sweeper incorporating an optical SSB modulator composed of four optical phase modulators,” J. Lightwave Technol. 20(11), 1908–1917 (2002), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-20-11-1908 .
    [CrossRef]
  10. K. Kitayama, “Highly stabilized millimeter-wave generation by using fiber-optic frequency-tunable comb generator,” J. Lightwave Technol. 15(5), 883–893 (1997).
    [CrossRef]

2003 (1)

2002 (1)

1997 (1)

K. Kitayama, “Highly stabilized millimeter-wave generation by using fiber-optic frequency-tunable comb generator,” J. Lightwave Technol. 15(5), 883–893 (1997).
[CrossRef]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[CrossRef]

Harada, M.

Hirata, A.

Horiguchi, T.

Izutsu, M.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[CrossRef]

Kitayama, K.

K. Kitayama, “Highly stabilized millimeter-wave generation by using fiber-optic frequency-tunable comb generator,” J. Lightwave Technol. 15(5), 883–893 (1997).
[CrossRef]

Kobayashi, T.

Nagatsuma, T.

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[CrossRef]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[CrossRef]

Takesue, H.

IEEE J. Quantum Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum Electron. 17(11), 2225–2227 (1981).
[CrossRef]

J. Lightwave Technol. (3)

Other (6)

T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, “Giga-bit wireless link using 300-400 GHz bands,” in Proceeding of International Topical Meeting on Microwave Photonics, 2009, paper Th2.3 (2009).

T. Kato, R. Okabe, R. Ludwig, C. Schmidt-Langhorst, C. Schubert, and S. Watanabe, “All-optical THz-band frequency multiplexing on a single optical carrier using fiber cross-phase modulation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OThC5

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. ID 2111358 (to be published).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2000).

P. J. Winzer and R.-J. Essiambre, Optical Fiber Communications V (Academic Press, 2008), Vol. B, Chap. 2.

T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA9. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-PDPA9

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of proposed sequential all-optical FDM by XPM.

Fig. 2
Fig. 2

Experimental setup. The inset shows the configuration of the multiplexing loop and the two control signal generators (Ctrl-1 and Ctrl-2). SW: optical switch, Comb: optical comb generator, LOPS: looped optical frequency shifter, LNM: lithium niobate intensity/phase modulator, RX: receiver, SMF: Single-mode fiber.

Fig. 3
Fig. 3

Setup of looped optical frequency shifters (LOFS).

Fig. 4
Fig. 4

Output optical spectrum of LOFS in each sequence (Res.: 0.01 nm) with the initial optical frequency of 192.45 THz and the shifted frequency of −20 GHz.

Fig. 5
Fig. 5

Modulation efficiency dependence on the beat frequency.

Fig. 6
Fig. 6

Optical spectrum of multiplexed carrier light: (a) 6-channel multiplexing after 3 laps and (b) 12-channel multiplexing after 6 laps. Res.: 0.1 nm.

Fig. 7
Fig. 7

BER characteristics. The insets show (a) the waveform after transmission of an ASK signal (H: 20 ps/div.), (b) the waveform after transmission of a DPSK demodulated signal (H: 20 ps/div.), and (c) the optical spectrum of extracted 3rd channel. (H: 0.2 nm/div., V: 10 dB/div., Res.: 0.01 nm).

Metrics