Abstract

This paper presents the first systematic phase and group birefringence measurements of elliptical core fibers covering an unprecedented ellipticity range from 0.1 to 0.9. Experimental results at 1550 nm are compared with simulations, and the birefringence ratio is shown to depend on both ellipticity and core area. Also the dispersion of the group birefringence is discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
    [CrossRef]
  2. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
  3. M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single-mode fibers,” J. Lightwave Technol. 21(12), 3374–3378 (2003).
    [CrossRef]
  4. P. Hlubina, T. Martynkien, and W. Urbańczyk, “Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry,” Opt. Express 11(22), 2793–2798 (2003).
    [PubMed]
  5. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. R. Folkenberg, and M. D. Nielsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12(24), 5931–5939 (2004).
    [CrossRef] [PubMed]
  6. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
    [CrossRef] [PubMed]
  7. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [CrossRef]
  8. J. Noda, K. Okamoto, and T. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [CrossRef]
  9. A.T. Nguyen, E. Lazzeri, P. Ghelfi, A. Bogoni, and L. Poli, “Precise low-cost optical time multiplexer based on the birefringence of polarization maintaining fibers,” Proceedings ECOC2009, paper P.1.20 (2009).
  10. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993).
    [CrossRef] [PubMed]
  11. W. Urbanczyk, T. Martynkien, and W. J. Bock, “Dispersion effects in elliptical-core highly birefringent fibers,” Appl. Opt. 40(12), 1911–1920 (2001).
    [CrossRef] [PubMed]
  12. S. Herstrøm, “Measured and simulated cutoff wavelengths as a function of core ellipticity for higher order modes in elliptical optical fibers,” Opt. Eng. 49(12), 125002 (2010).
    [CrossRef]
  13. W. Eickhoff, “Stress-induced single-polarization single-mode fiber,” Opt. Lett. 7(12), 629–631 (1982).
    [CrossRef] [PubMed]
  14. M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
    [CrossRef]
  15. R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
    [CrossRef]
  16. K. Takada, J. Noda, and R. Ulrich, “Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force,” Appl. Opt. 24(24), 4387–4391 (1985).
    [CrossRef] [PubMed]
  17. N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
    [CrossRef]
  18. K. Okamoto, T. Edahiro, and N. Shibata, “Polarization properties of single-polarization fibers,” Opt. Lett. 7(11), 569–571 (1982).
    [CrossRef] [PubMed]
  19. K. Okamoto and T. Hosaka, “Polarization-dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett. 12(4), 290–292 (1987).
    [CrossRef] [PubMed]
  20. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett. 35(3), 378–380 (2010).
    [CrossRef] [PubMed]

2010 (2)

S. Herstrøm, “Measured and simulated cutoff wavelengths as a function of core ellipticity for higher order modes in elliptical optical fibers,” Opt. Eng. 49(12), 125002 (2010).
[CrossRef]

Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, “Highly birefringent silica microfiber,” Opt. Lett. 35(3), 378–380 (2010).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

2001 (1)

1993 (1)

1987 (2)

K. Okamoto and T. Hosaka, “Polarization-dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett. 12(4), 290–292 (1987).
[CrossRef] [PubMed]

R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
[CrossRef]

1986 (1)

J. Noda, K. Okamoto, and T. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

1985 (1)

1983 (4)

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[CrossRef]

S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
[CrossRef] [PubMed]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

1982 (2)

1979 (1)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Barlow, A. J.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[CrossRef]

Birch, R. D.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[CrossRef]

Bock, W. J.

Brambilla, G.

Calvani, R.

R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
[CrossRef]

Caponi, R.

R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
[CrossRef]

Cisternino, F.

R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
[CrossRef]

Coppa, G.

R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
[CrossRef]

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Edahiro, T.

Eickhoff, W.

Folkenberg, J. R.

Gisin, N.

Herstrøm, S.

S. Herstrøm, “Measured and simulated cutoff wavelengths as a function of core ellipticity for higher order modes in elliptical optical fibers,” Opt. Eng. 49(12), 125002 (2010).
[CrossRef]

Hlubina, P.

Hosaka, T.

Jung, Y.

Legre, M.

Legré, M.

Lit, J. W. Y.

Ludvigsen, H.

Martynkien, T.

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Nielsen, M. D.

Noda, J.

J. Noda, K. Okamoto, and T. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

K. Takada, J. Noda, and R. Ulrich, “Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force,” Appl. Opt. 24(24), 4387–4391 (1985).
[CrossRef] [PubMed]

Oh, K.

Okamoto, K.

K. Okamoto and T. Hosaka, “Polarization-dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett. 12(4), 290–292 (1987).
[CrossRef] [PubMed]

J. Noda, K. Okamoto, and T. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

K. Okamoto, T. Edahiro, and N. Shibata, “Polarization properties of single-polarization fibers,” Opt. Lett. 7(11), 569–571 (1982).
[CrossRef] [PubMed]

Payne, D. N.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
[CrossRef] [PubMed]

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

Richardson, D. J.

Ritari, T.

Sasaki, T.

J. Noda, K. Okamoto, and T. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Sasaki, Y.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

Seikai, S.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

Shibata, N.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

K. Okamoto, T. Edahiro, and N. Shibata, “Polarization properties of single-polarization fibers,” Opt. Lett. 7(11), 569–571 (1982).
[CrossRef] [PubMed]

Takada, K.

Tateda, M.

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

Ulrich, R.

Urbanczyk, W.

Varnham, M. P.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[CrossRef]

Wegmuller, M.

Zhang, F.

Appl. Opt. (3)

Electron. Lett. (1)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarization in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Shibata, K. Okamoto, M. Tateda, S. Seikai, and Y. Sasaki, “Modal Birefringence and Polarization Mode Dispersion in Single-Mode Fibers with Stress-Induced Anisotropy,” IEEE J. Quantum Electron. 19(6), 1110–1115 (1983).
[CrossRef]

J. Lightwave Technol. (5)

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

J. Noda, K. Okamoto, and T. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single-mode fibers,” J. Lightwave Technol. 21(12), 3374–3378 (2003).
[CrossRef]

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[CrossRef]

R. Calvani, R. Caponi, F. Cisternino, and G. Coppa, “Fiber Birefringence Measurements with an External Stress Method and Heterodyne Polarization Detection,” J. Lightwave Technol. 5(9), 1176–1182 (1987).
[CrossRef]

Opt. Eng. (1)

S. Herstrøm, “Measured and simulated cutoff wavelengths as a function of core ellipticity for higher order modes in elliptical optical fibers,” Opt. Eng. 49(12), 125002 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Other (2)

A.T. Nguyen, E. Lazzeri, P. Ghelfi, A. Bogoni, and L. Poli, “Precise low-cost optical time multiplexer based on the birefringence of polarization maintaining fibers,” Proceedings ECOC2009, paper P.1.20 (2009).

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Example of SOP evolution on the Poincare sphere. b) The three normalized Stokes vector components as function of displacement length from which the polarization beat-length is determined.

Fig. 2
Fig. 2

a) Group birefringence determined from the phase birefringence dependence on wavelength (in blue) and from DGD measurements (in green). b) Examples of DGD as function of wavelength, all well approximated by a linear dependence in the range covered.

Fig. 3
Fig. 3

a) Measured phase (blue) and group (black) birefringence for fiber 1. Calculated stress (green) and form birefringence (red) and the calculated total phase birefringence (magenta). b) Calculated stress, form, total phase and group birefringence for a generic elliptic step index profile with equivalent flat top distribution [6].

Fig. 4
Fig. 4

a) Ratio of measured group and phase birefringence for fiber from preform 1, 2 and 3 with decreasing core area. b) Calculated ratio from simulated generic elliptic step index profiles with similar core areas and equivalent flat top distribution.

Fig. 5
Fig. 5

a) Measured DGD slope at 1550 nm for fiber from preform 1 (blue points) together with the calculated slope (bright blue). Also shown are the DGD slopes for fiber from preforms 2 and 3. b) Calculated DGD slope from simulated generic elliptic step index profiles with similar core areas and equivalent flat top distribution.

Tables (1)

Tables Icon

Table 1 Elliptical core fibers investigated

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B phase ( λ )= n x n y = λ 2π ( β x ( λ ) β y ( λ ) ),
B stress ( λ )=M( λ ) CEΔαΔT 1ν ab a+b
B group ( λ )= n g,x n g,y = d( β x β y ) dk = B phase ( λ )λ d B phase ( λ ) dλ ,

Metrics