Abstract

We present results from the first gridless networking field trial with flexible spectrum switching nodes and 620 km of installed fibre links. Signals at 10G, 12.25G, 42.7G, DP-QPSK 40G, DP-QPSK 100G and 555G are generated, successfully transported and switched using flexible, custom spectrum allocation per channel. Spectrum defragmentation is demonstrated using integrated SOA-MZI wavelength converters. Results show error-free end-to-end performance (BER<1e-9) for the OOK channels and good pre-FEC BER performance with sufficient margin to FEC limit for the 40G and 100G coherent channels as well as for the 555G super-channel.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” 36th European Conference and Exhibition on Optical Communication (ECOC), 19–23 Sept. 2010.
  2. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” 35th European Conference on Optical Communication, ECOC '09, 20–24 Sept. 2009.
  3. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” Optical Fiber Communication (OFC2010), 21–25 March 2010.
  4. J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation, transmission and coherent detection of 11.2 Tb/s (112×100Gb/s) single source optical OFDM superchannel,” OFC/NFOEC, 6–10 March 2011.
  5. T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 6–10 March 2011.
  6. D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).
  7. N. Amaya, G. S. Zervas, B. Rahimzadeh Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conference and Exposition on Optical Communications, paper We.9.K.2, ECOC 2011.
  8. K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
    [CrossRef]
  9. WaveShaper, http://www.finisar.com/optical_instrumentation .
  10. D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
    [CrossRef]
  11. M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011).
    [CrossRef]
  12. Y. Miyamoto, “4O-Gbit/s transport system: its WDM upgrade,” Optical Fiber Communication (2000), Vol. 3, pp. 323–325.
  13. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010).
    [CrossRef]
  14. H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
    [CrossRef]

2011 (1)

2010 (2)

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol. 28(4), 557–598 (2010).
[CrossRef]

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

2009 (1)

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

2002 (1)

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Apostolopoulos, D.

M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011).
[CrossRef]

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

Avramopoulos, H.

M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011).
[CrossRef]

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

Beckett, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Berthold, J.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Boertjes, D.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Bougioukos, M.

Chang, S.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Filer, M.

Fontaine, N.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Fujiwara, M.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Geisler, D.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Iwatsuki, K.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Kitoh, T.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Laperle, C.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Miliou, A.

Petrantonakis, D.

Pleros, N.

M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011).
[CrossRef]

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

Roberts, K.

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

Scott, R.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Shibata, T.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Spyropoulou, M.

Suzuki, H.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Takachio, N.

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

Tibuleac, S.

Vyrsokinos, K.

M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011).
[CrossRef]

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

Wen, K.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Yin, Y.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Yoo, S.

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

Zakynthinos, P.

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

IEEE Commun. Mag. (1)

K. Roberts, D. Beckett, D. Boertjes, J. Berthold, and C. Laperle, “100G and beyond with digital coherent signal processing,” IEEE Commun. Mag. 48(7), 62–69 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. Geisler, Y. Yin, K. Wen, N. Fontaine, R. Scott, S. Chang, and S. Yoo, “Demonstration of spectral defragmentation in flexible bandwidth optical networking by FWM,” IEEE Photon. Technol. Lett. (to be published).

D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, and H. Avramopoulos, “An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics,” IEEE Photon. Technol. Lett. 21(19), 1363–1365 (2009).
[CrossRef]

H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, and T. Shibata, “12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique,” IEEE Photon. Technol. Lett. 14(3), 405–407 (2002).
[CrossRef]

J. Lightwave Technol. (2)

Other (8)

Y. Miyamoto, “4O-Gbit/s transport system: its WDM upgrade,” Optical Fiber Communication (2000), Vol. 3, pp. 323–325.

N. Amaya, G. S. Zervas, B. Rahimzadeh Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in 37th European Conference and Exposition on Optical Communications, paper We.9.K.2, ECOC 2011.

WaveShaper, http://www.finisar.com/optical_instrumentation .

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” 36th European Conference and Exhibition on Optical Communication (ECOC), 19–23 Sept. 2010.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” 35th European Conference on Optical Communication, ECOC '09, 20–24 Sept. 2009.

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” Optical Fiber Communication (OFC2010), 21–25 March 2010.

J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, “Generation, transmission and coherent detection of 11.2 Tb/s (112×100Gb/s) single source optical OFDM superchannel,” OFC/NFOEC, 6–10 March 2011.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, T. Wang, Y. Aono, T. Tajima, S. Murakami, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 6–10 March 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gridless networking scenario and field trial map.

Fig. 2
Fig. 2

(a) Field trial gridless networking setup, (b) spectra at different points in the setup; A, B and C illustrate spectrum defragmentation, (c) setup used for SOA-MZI wavelength converters.

Fig. 3
Fig. 3

(a) BER of coherent 40G and 100G channels (P2P: 410km, E2E: Gridless network 510 km), (b) 555 Gb/s signal at Node 2 and its end-to-end BER, (c) Performance of 42.7 Gb/s RZ (λ9) and 42.7 Gb/s NRZ (λ12) at several points in the setup (d) BER performance of 12.25-Gb/s and 42.7-Gb/s SOA-MZI wavelength converters.

Fig. 4
Fig. 4

(a) Filtering effects on 42.7 Gb/s RZ signal and (b) 10G SNR performance for varying channel spacings.

Tables (1)

Tables Icon

Table 1 Summary of the traffic in the gridless optical network field trial

Metrics