Abstract

An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also reported.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
    [CrossRef]
  2. N. Amaya, G. S. Zervas, M. Irfan, Y. R. Zhou, A. Lord, and D. Simeonidou, “Experimental demonstration of gridless spectrum and time optical switching,” Opt. Express 19(12), 11182–11188 (2011).
    [CrossRef] [PubMed]
  3. N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless Optical Networking Field Trial: Flexible Spectrum Switching, Defragmentation and Transport of 10G/40G/100G/555G over 620-km Field Fiber,” in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.1.
  4. D. J. Geisler, R. Proietti, Y. Yin, R. P. Scott, X. Cai, N. K. Fontaine, L. Paraschis, O. Gerstel, and S. J. B. Yoo, “The First Testbed Demonstration of a Flexible Bandwidth Network with a Real-Time Adaptive Control Plane,” in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.2.
  5. A. Patel, P. Ji, J. Jue, and T. Wang, “Survivable Transparent Flexible Optical WDM (FWDM) Networks,” Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI2.
  6. A. Patel, P. Ji, J. Jue, and T. Wang, “Defragmentation of Transparent Flexible Optical WDM (FWDM) Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI8.
  7. P. N. Ji, A. Patel, D. Qian, J. Jue, J. Hu, Y. Aono, and T. Wang, “Optical Layer Traffic Grooming in Flexible Optical WDM (FWDM) Networks,” in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.102.
  8. J. Berthold, “Toward 100G Networking and Beyond”, in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.3.K.1.
  9. M. Wu and W. Way, “Fiber Nonlinearity Limitations in Ultra-Dense WDM systems,” J. Lightwave Technol. 22(6), 1483–1498 (2004).
    [CrossRef]
  10. J. Kurzweil, An Introduction to Digital Communications (John Wiley & Sons, Inc., 1999), Chap. 10.
  11. D. Zibar, R. Sambaraju, A. Caballero, J. Herrera, and I. Tafur Monroy, “Carrier Recovery and Equalization for Photonic-Wireless Links with Capacities up to 40 Gb/s in 75-110 GHz Band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThJ4.

2011 (1)

2010 (1)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

2004 (1)

Amaya, N.

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Irfan, M.

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Lord, A.

Simeonidou, D.

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Tanaka, T.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

Way, W.

Wu, M.

Zervas, G. S.

Zhou, Y. R.

IEEE Commun. Mag. (1)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-Adaptive Spectrum Resource Allocation in Spectrum-Sliced Elastic Optical Path Network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (8)

N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless Optical Networking Field Trial: Flexible Spectrum Switching, Defragmentation and Transport of 10G/40G/100G/555G over 620-km Field Fiber,” in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.1.

D. J. Geisler, R. Proietti, Y. Yin, R. P. Scott, X. Cai, N. K. Fontaine, L. Paraschis, O. Gerstel, and S. J. B. Yoo, “The First Testbed Demonstration of a Flexible Bandwidth Network with a Real-Time Adaptive Control Plane,” in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.K.2.

A. Patel, P. Ji, J. Jue, and T. Wang, “Survivable Transparent Flexible Optical WDM (FWDM) Networks,” Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI2.

A. Patel, P. Ji, J. Jue, and T. Wang, “Defragmentation of Transparent Flexible Optical WDM (FWDM) Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuI8.

P. N. Ji, A. Patel, D. Qian, J. Jue, J. Hu, Y. Aono, and T. Wang, “Optical Layer Traffic Grooming in Flexible Optical WDM (FWDM) Networks,” in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.102.

J. Berthold, “Toward 100G Networking and Beyond”, in European Conf. Opt. Commun., OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.3.K.1.

J. Kurzweil, An Introduction to Digital Communications (John Wiley & Sons, Inc., 1999), Chap. 10.

D. Zibar, R. Sambaraju, A. Caballero, J. Herrera, and I. Tafur Monroy, “Carrier Recovery and Equalization for Photonic-Wireless Links with Capacities up to 40 Gb/s in 75-110 GHz Band,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThJ4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Moving from fix to flex grid scenario. Large guard bands are still employed in both schemes.

Fig. 2
Fig. 2

Experiment setup of UDWDM PM QPSK system; DFB: Distributed feedback laser; PD: 40G photodiode; ESA: Electrical Spectrum Analyzer; PC: polarization controller; PBS: polarization beam splitter; PBC: polarization beam combiner; EDFA: erbium-doped fiber amplifier; VOA: variable optical attenuator; OBPF: optical band-pass filter; ECL: external cavity laser.

Fig. 3
Fig. 3

Non-linear Decision Feedback Equalizer (DFE) structure.

Fig. 4
Fig. 4

(a) BER as a function of OSNR for a spacing of 14GHz without nonlinear equalization, with DFE and with optimization of the digital filter. (b) BER as a function of the spacing for two fixed values of OSNR with and without nonlinear equalization.

Fig. 5
Fig. 5

(a) OSNR as a function of the spacing for two fixed values of BER with and without nonlinear equalization for Back-to-Back. (b) OSNR as a function of the spacing for two fixed values of BER with and without nonlinear equalization for 80Km of SMF.

Fig. 6
Fig. 6

Experiment setup of transmitter side for UDWDM with DFB scheme and MZM scheme.

Fig. 7
Fig. 7

(a) BER as a function of the spacing for a fixed value of OSNR with and without nonlinear equalization for UDWDM MZM case. (b) BER as a function of the spacing for a fixed value of OSNR for UDWDM DFB and MZM case.

Metrics