Abstract

Our Terabit LAN initiatives attempt to enhance the scalability and utilization of lambda resources. This paper describes bandwidth-on-demand virtualized 100GE access to WDM networks on a field fiber test-bed using multi-domain optical-path provisioning.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [CrossRef]
  2. M. Tomizawa, J. Yamawaku, Y. Takigawa, M. Koga, Y. Miyamoto, T. Morioka, and K. Hagimoto, “Terabit LAN with optical virtual concatenation for grid applications with super-computers,” in Optical Fiber Communication Conference, Technical Digest, paper OThG6 (2005).
  3. O. Ishida and S. Araki, “Challenging Terabit-class LAN over wide area networks,” J. Lightwave Technol. 27(12), 1947–1956 (2009).
    [CrossRef]
  4. O. Ishida, S. Araki, S. Arai, T. Ichikawa, H. Toyoda, I. Morita, T. Hoshida, and H. Murai, “On-demand virtual optical network access using 100 Gb/s Ethernet,” in European Conference on Optical Communication (ECOC), Technical Digest, paper Tu.5.C.3 (2011).
  5. K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).
  6. H. Frazier, “Aggregation at the physical layer,” IEEE Commun. Mag. 46(2), S12 (2008).
    [CrossRef]
  7. G. Nicholl, M. Gustlin, and O. Trainin, “A physical coding sublayer for 100GbE [Applications & Practice],” IEEE Commun. Mag. 45(12), 4–10 (2007).
    [CrossRef]
  8. H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Commun. Mag. 48(3), S41–S47 (2010).
    [CrossRef]
  9. G. Ono, K. Watanabe, T. Muto, H. Yamashita, K. Fukuda, N. Masuda, R. Nemoto, E. Suzuki, T. Takemoto, F. Yuki, M. Yagyu, H. Toyoda, A. Kambe, T. Saito, and S. Nishimura, “10:4 MUX and 4:10 DEMUX gearbox LSI for 100-Gigabit Ethernet link,” in Digest of Technical Papers of IEEE International Conference Solid-State Circuits (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 148–150.
  10. S. Araki, I. Nishioka, S. Ishida, Y. Iizawa, and M. Nakama, “Optical network control challenges, ” IEEE/LEOS Summer Topicals, (2009), pp. 139–140.
  11. Y. Iizawa, S. Ishida, I. Nishioka, A. Tajima, and S. Araki, “Fast path signaling method for large-scale multi-domain networks, ” iPOP2011, 3–1, Kanagawa, Japan, June 2–3, 2011.
  12. J. P. Vasseur, ed., R. Zhang, N. Bitar, and J. L. Le Roux, “A backward recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” Internet Draft draft-ietf-pce-brpc-09, Work. in progress.
  13. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [CrossRef]
  14. Y. Akiyama, H. Nakashima, T. Hoshida, T. Inoue, S. Kametani, and K. Onohara, “Error-free 125Gb/s Polmux RZ-DQPSK transmission with concatenated LDPC and RS FEC over 560km (in Japanese),” Proc. IEICE Gen. Conf. B-10–110, −111 (2011).
  15. F. Parmigiani, R, Slavíc, J. Kakande, C. Lundström, M. Sjödin, P. Andrekson, R. Weerasuriya, S. Sygletos, A. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D, Syvridits, S. Dasgupta, P. Petropoulos, and D. Richardson, “All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier,” in Proc. OFC2010, Post-deadline paper PDPC3 (2010).
  16. M. Matsumoto, “A fiber-based all-optical 3R regenerator for DPSK signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
    [CrossRef]
  17. S. Arahira, H. Murai, and K. Fujii, “All-optical modulation-format convertor employing polarization-rotation-type nonlinear optical fiber loop mirror,” IEEE Photon. Technol. Lett. 20(18), 1530–1532 (2008).
    [CrossRef]
  18. H. Murai, Y. Kanda, M. Kagawa, and S. Arahira, “Regenerative SPM-based wavelength conversion and field demonstration of 160-Gb/s all-optical 3R operation,” J. Lightwave Technol. 28(6), 910–921 (2010).
    [CrossRef]

2011 (1)

K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).

2010 (4)

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Commun. Mag. 48(3), S41–S47 (2010).
[CrossRef]

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

H. Murai, Y. Kanda, M. Kagawa, and S. Arahira, “Regenerative SPM-based wavelength conversion and field demonstration of 160-Gb/s all-optical 3R operation,” J. Lightwave Technol. 28(6), 910–921 (2010).
[CrossRef]

2009 (1)

2008 (2)

H. Frazier, “Aggregation at the physical layer,” IEEE Commun. Mag. 46(2), S12 (2008).
[CrossRef]

S. Arahira, H. Murai, and K. Fujii, “All-optical modulation-format convertor employing polarization-rotation-type nonlinear optical fiber loop mirror,” IEEE Photon. Technol. Lett. 20(18), 1530–1532 (2008).
[CrossRef]

2007 (2)

M. Matsumoto, “A fiber-based all-optical 3R regenerator for DPSK signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
[CrossRef]

G. Nicholl, M. Gustlin, and O. Trainin, “A physical coding sublayer for 100GbE [Applications & Practice],” IEEE Commun. Mag. 45(12), 4–10 (2007).
[CrossRef]

Arahira, S.

H. Murai, Y. Kanda, M. Kagawa, and S. Arahira, “Regenerative SPM-based wavelength conversion and field demonstration of 160-Gb/s all-optical 3R operation,” J. Lightwave Technol. 28(6), 910–921 (2010).
[CrossRef]

S. Arahira, H. Murai, and K. Fujii, “All-optical modulation-format convertor employing polarization-rotation-type nonlinear optical fiber loop mirror,” IEEE Photon. Technol. Lett. 20(18), 1530–1532 (2008).
[CrossRef]

Araki, S.

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Frazier, H.

H. Frazier, “Aggregation at the physical layer,” IEEE Commun. Mag. 46(2), S12 (2008).
[CrossRef]

Fujii, K.

S. Arahira, H. Murai, and K. Fujii, “All-optical modulation-format convertor employing polarization-rotation-type nonlinear optical fiber loop mirror,” IEEE Photon. Technol. Lett. 20(18), 1530–1532 (2008).
[CrossRef]

Gustlin, M.

G. Nicholl, M. Gustlin, and O. Trainin, “A physical coding sublayer for 100GbE [Applications & Practice],” IEEE Commun. Mag. 45(12), 4–10 (2007).
[CrossRef]

Hisadome, K.

K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).

Ishida, O.

K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).

O. Ishida and S. Araki, “Challenging Terabit-class LAN over wide area networks,” J. Lightwave Technol. 27(12), 1947–1956 (2009).
[CrossRef]

Kagawa, M.

Kanda, Y.

Matsumoto, M.

M. Matsumoto, “A fiber-based all-optical 3R regenerator for DPSK signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
[CrossRef]

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Murai, H.

H. Murai, Y. Kanda, M. Kagawa, and S. Arahira, “Regenerative SPM-based wavelength conversion and field demonstration of 160-Gb/s all-optical 3R operation,” J. Lightwave Technol. 28(6), 910–921 (2010).
[CrossRef]

S. Arahira, H. Murai, and K. Fujii, “All-optical modulation-format convertor employing polarization-rotation-type nonlinear optical fiber loop mirror,” IEEE Photon. Technol. Lett. 20(18), 1530–1532 (2008).
[CrossRef]

Nicholl, G.

G. Nicholl, M. Gustlin, and O. Trainin, “A physical coding sublayer for 100GbE [Applications & Practice],” IEEE Commun. Mag. 45(12), 4–10 (2007).
[CrossRef]

Nishimura, S.

H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Commun. Mag. 48(3), S41–S47 (2010).
[CrossRef]

Ono, G.

H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Commun. Mag. 48(3), S41–S47 (2010).
[CrossRef]

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

Teshima, M.

K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).

Toyoda, H.

H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Commun. Mag. 48(3), S41–S47 (2010).
[CrossRef]

Trainin, O.

G. Nicholl, M. Gustlin, and O. Trainin, “A physical coding sublayer for 100GbE [Applications & Practice],” IEEE Commun. Mag. 45(12), 4–10 (2007).
[CrossRef]

Winzer, P.

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

Yamada, Y.

K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).

IEEE Commun. Mag. (5)

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

H. Frazier, “Aggregation at the physical layer,” IEEE Commun. Mag. 46(2), S12 (2008).
[CrossRef]

G. Nicholl, M. Gustlin, and O. Trainin, “A physical coding sublayer for 100GbE [Applications & Practice],” IEEE Commun. Mag. 45(12), 4–10 (2007).
[CrossRef]

H. Toyoda, G. Ono, and S. Nishimura, “100GbE PHY and MAC layer implementations,” IEEE Commun. Mag. 48(3), S41–S47 (2010).
[CrossRef]

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Matsumoto, “A fiber-based all-optical 3R regenerator for DPSK signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
[CrossRef]

S. Arahira, H. Murai, and K. Fujii, “All-optical modulation-format convertor employing polarization-rotation-type nonlinear optical fiber loop mirror,” IEEE Photon. Technol. Lett. 20(18), 1530–1532 (2008).
[CrossRef]

IEICE Trans. Commun. E (1)

K. Hisadome, M. Teshima, Y. Yamada, and O. Ishida, “100 Gb/s Ethernet inverse multiplexing based on aggregation at the physical layer,” IEICE Trans. Commun. E 94B(4), 904–909 (2011).

J. Lightwave Technol. (2)

Other (8)

O. Ishida, S. Araki, S. Arai, T. Ichikawa, H. Toyoda, I. Morita, T. Hoshida, and H. Murai, “On-demand virtual optical network access using 100 Gb/s Ethernet,” in European Conference on Optical Communication (ECOC), Technical Digest, paper Tu.5.C.3 (2011).

M. Tomizawa, J. Yamawaku, Y. Takigawa, M. Koga, Y. Miyamoto, T. Morioka, and K. Hagimoto, “Terabit LAN with optical virtual concatenation for grid applications with super-computers,” in Optical Fiber Communication Conference, Technical Digest, paper OThG6 (2005).

G. Ono, K. Watanabe, T. Muto, H. Yamashita, K. Fukuda, N. Masuda, R. Nemoto, E. Suzuki, T. Takemoto, F. Yuki, M. Yagyu, H. Toyoda, A. Kambe, T. Saito, and S. Nishimura, “10:4 MUX and 4:10 DEMUX gearbox LSI for 100-Gigabit Ethernet link,” in Digest of Technical Papers of IEEE International Conference Solid-State Circuits (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 148–150.

S. Araki, I. Nishioka, S. Ishida, Y. Iizawa, and M. Nakama, “Optical network control challenges, ” IEEE/LEOS Summer Topicals, (2009), pp. 139–140.

Y. Iizawa, S. Ishida, I. Nishioka, A. Tajima, and S. Araki, “Fast path signaling method for large-scale multi-domain networks, ” iPOP2011, 3–1, Kanagawa, Japan, June 2–3, 2011.

J. P. Vasseur, ed., R. Zhang, N. Bitar, and J. L. Le Roux, “A backward recursive PCE-based computation (BRPC) procedure to compute shortest constrained inter-domain traffic engineering label switched paths,” Internet Draft draft-ietf-pce-brpc-09, Work. in progress.

Y. Akiyama, H. Nakashima, T. Hoshida, T. Inoue, S. Kametani, and K. Onohara, “Error-free 125Gb/s Polmux RZ-DQPSK transmission with concatenated LDPC and RS FEC over 560km (in Japanese),” Proc. IEICE Gen. Conf. B-10–110, −111 (2011).

F. Parmigiani, R, Slavíc, J. Kakande, C. Lundström, M. Sjödin, P. Andrekson, R. Weerasuriya, S. Sygletos, A. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D, Syvridits, S. Dasgupta, P. Petropoulos, and D. Richardson, “All-optical phase regeneration of 40Gbit/s DPSK signals in a black-box phase sensitive amplifier,” in Proc. OFC2010, Post-deadline paper PDPC3 (2010).

Supplementary Material (1)

» Media 1: MOV (3963 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Paradigm shifts in optical interfaces triggered the Terabit-LAN initiatives over core transport networks. (a) Trend in optical system capacity per fiber. (b) Concept of Terabit-LAN over WDM networks.

Fig. 2
Fig. 2

Overview of the two five-year research projects to prepare on-demand data transfer at 100G. (a) Project “Lambda Access.” (b) Project “Lambda Utilities.”

Fig. 3
Fig. 3

Technologies enabling virtualized 100GE network access to WDM network. (a) Adaptive inverse multiplexing for 100GE. (b) Mega-byte super jumbo frame processing.

Fig. 4
Fig. 4

Technologies enabling Ethernet fair aggregation and single-lambda 100GE. (a) Single-lambda 100GE by 50 Gbaud DQPSK. (b) Fair-queuing Ethernet frame aggregation.

Fig. 5
Fig. 5

Scalable multi-domain routing using PCEs. (a) Concept of PCE-based multi-domain path control system. (b) Performance evaluation of signaling time.

Fig. 6
Fig. 6

Spectral-efficient Polmux RZ-DQPSK with LDPC and RS FEC. (a) Field trial configuration. (b) Performance of LDPC and RS FEC. (c) Stable operation at 125 G.

Fig. 7
Fig. 7

(a) Schematic image of dual-mode optical 3R regenerator. (b) Demonstration of 160-Gb/s OOK/DPSK dual-mode 3R operation, (c) Results of re-circulating loop transmission over 5000 km. Insets are eye-diagrams of 160-Gb/s signals and optically demultiplexed 40-Gb/s measured with an electrical bandwidth of 40 GHz.

Fig. 8
Fig. 8

Field demonstration configuration for on-demand 100GE virtual connections over core transport network.

Fig. 9
Fig. 9

World-first on-demand 100-Gb/s download of blu-ray-disk-size image files. (a) 100G-bandwidth on-demand configuration via diverse route. (b) 100-Gb/s download demonstration (Media 1).

Metrics