Abstract

A simple scheme to simultaneously generate an on-off keying or bi-phase modulation (BPM) impulse radio ultra wideband (IR-UWB) signal and a baseband wired signal in the optical domain using a dual-drive modulator is proposed and demonstrated. Although the two signals have spectral overlap in the optical spectrum, they are located at different frequency bands when converted to electrical signals at a photodetector (PD), which can be well separated by an electrical filter. An experiment is carried out. Eye diagrams, electrical spectra and BER measurements show that the co-channel interference between the UWB and the wired signals is small for a single-channel 36-km fiber link to provide 1.25-Gb/s UWB wireless and 1.25-Gb/s baseband wired services. The inter-channel interference is also small and negligible when the link is operated together with two other 1.25 Gb/s baseband wired links, which demonstrates that a conventional WDM-PON can be upgraded to provide additional UWB services without affecting the existing services by modifying the modulators in the center office and inserting UWB antennas in the optical network units.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw. 1(4), C35–C50 (2009).
    [CrossRef]
  2. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  3. K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
    [CrossRef]
  4. S. L. Pan and J. P. Yao, “A UWB over fiber system compatible with WDM-PON architecture,” IEEE Photon. Technol. Lett. 22(20), 1500–1502 (2010).
    [CrossRef]
  5. S. L. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J. 2(5), 712–718 (2010).
    [CrossRef]
  6. T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
    [CrossRef]
  7. T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
    [CrossRef]
  8. S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
    [CrossRef]
  9. R. Gu, S. L. Pan, X. F. Chen, M. H. Pan, and D. Ben, “Influence of large signal modulation on photonic UWB generation based on electro-optic modulator,” Opt. Express 19(14), 13686–13691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-14-13686 .
    [CrossRef] [PubMed]
  10. M. Abtahi, M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “All-optical 500-Mb/s UWB transceiver: an experimental demonstration,” J. Lightwave Technol. 26(15), 2795–2802 (2008).
    [CrossRef]
  11. T. B. Gibbon, X. B. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
    [CrossRef]
  12. A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, Inc., 1996).

2011 (3)

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
[CrossRef]

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

R. Gu, S. L. Pan, X. F. Chen, M. H. Pan, and D. Ben, “Influence of large signal modulation on photonic UWB generation based on electro-optic modulator,” Opt. Express 19(14), 13686–13691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-14-13686 .
[CrossRef] [PubMed]

2010 (3)

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “A UWB over fiber system compatible with WDM-PON architecture,” IEEE Photon. Technol. Lett. 22(20), 1500–1502 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J. 2(5), 712–718 (2010).
[CrossRef]

2009 (3)

G. K. Chang, A. Chowdhury, Z. S. Jia, H. C. Chien, M. F. Huang, J. J. Yu, and G. Ellinas, “Key technologies of WDM-PON for future converged optical broadband access networks,” J. Opt. Commun. Netw. 1(4), C35–C50 (2009).
[CrossRef]

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

T. B. Gibbon, X. B. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

2008 (1)

2007 (1)

Abtahi, M.

Ben, D.

Caballero, A.

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

Chang, G. K.

Chen, X. F.

Chien, H. C.

Chowdhury, A.

Dittmann, L.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
[CrossRef]

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

Ellinas, G.

Gibbon, T. B.

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

T. B. Gibbon, X. B. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

Gu, R.

Guerrero, N.

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

Huang, M. F.

Jensen, J. B.

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

Jia, Z. S.

LaRochelle, S.

Mirshafiei, M.

Monroy, I. T.

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
[CrossRef]

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

T. B. Gibbon, X. B. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

Osadchiy, A. V.

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

Pan, M. H.

Pan, S. L.

R. Gu, S. L. Pan, X. F. Chen, M. H. Pan, and D. Ben, “Influence of large signal modulation on photonic UWB generation based on electro-optic modulator,” Opt. Express 19(14), 13686–13691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-14-13686 .
[CrossRef] [PubMed]

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J. 2(5), 712–718 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “A UWB over fiber system compatible with WDM-PON architecture,” IEEE Photon. Technol. Lett. 22(20), 1500–1502 (2010).
[CrossRef]

Pham, T. T.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
[CrossRef]

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

Prince, K.

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

Rusch, L. A.

Wang, Q.

Yao, J. P.

S. L. Pan and J. P. Yao, “A UWB over fiber system compatible with WDM-PON architecture,” IEEE Photon. Technol. Lett. 22(20), 1500–1502 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J. 2(5), 712–718 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Yu, J. J.

Yu, X.

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

Yu, X. B.

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
[CrossRef]

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

T. B. Gibbon, X. B. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

Zeng, F.

Zibar, D.

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

S. L. Pan and J. P. Yao, “Performance evaluation of UWB signal transmission over optical fiber,” IEEE J. Sel. Areas Comm. 28(6), 889–900 (2010).
[CrossRef]

IEEE Photon. J. (2)

S. L. Pan and J. P. Yao, “Simultaneous provision of UWB and wired services in a WDM-PON network using a centralized light source,” IEEE Photon. J. 2(5), 712–718 (2010).
[CrossRef]

T. T. Pham, X. Yu, T. B. Gibbon, L. Dittmann, and I. T. Monroy, “A WDM-PON-compatible system for simultaneous distribution of gigabit baseband and wireless ultrawideband services with flexible bandwidth allocation,” IEEE Photon. J. 3(1), 13–19 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. B. Gibbon, X. B. Yu, and I. T. Monroy, “Photonic ultra-wideband 781.25-Mb/s signal generation and transmission incorporating digital signal processing detection,” IEEE Photon. Technol. Lett. 21(15), 1060–1062 (2009).
[CrossRef]

T. T. Pham, X. B. Yu, L. Dittmann, and I. T. Monroy, “Integration of optically generated impulse radio UWB signals into baseband WDM-PON,” IEEE Photon. Technol. Lett. 23(8), 474–476 (2011).
[CrossRef]

K. Prince, J. B. Jensen, A. Caballero, X. B. Yu, T. B. Gibbon, D. Zibar, N. Guerrero, A. V. Osadchiy, and I. T. Monroy, “Converged wireline and wireless access over a 78-km deployed fiber long-reach WDM PON,” IEEE Photon. Technol. Lett. 21(17), 1274–1276 (2009).
[CrossRef]

S. L. Pan and J. P. Yao, “A UWB over fiber system compatible with WDM-PON architecture,” IEEE Photon. Technol. Lett. 22(20), 1500–1502 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (1)

A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. (Prentice-Hall, Inc., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The proposed scheme for the simultaneous generation of optical UWB signal and optical wired signal. (b) The generation of UWB signals with different modulation formats. LD: laser diode; MZM: Mach-Zehnder modulator; PD: photodetector; RZ: return-to-zero; NRZ: non-return-to-zero; OOK: on-off keying; BPM: bi-phase modulation.

Fig. 2
Fig. 2

Schematic diagram of the proposed UWB over WDM-PON system. LPF: lowpass filter; Amp: electrical amplifier; Rx: receiver; ONU: optical network unit; SMF: single-mode fiber; LO: local oscillator.

Fig. 3
Fig. 3

Eye diagrams and electrical spectra of the electrical drive (a) RZ and (b) dark RZ signals and (c) NRZ signals. RBW = 1 MHz.

Fig. 4
Fig. 4

Eye diagrams and electrical spectra of the received signals in the remote site when a single input signal is introduced to the MZM. (a), (b) The RZ signal is enabled; (c), (d) the NRZ signal is enabled. RBW = 1 MHz.

Fig. 5
Fig. 5

Eye diagrams and electrical spectra of the back-to-back signals and the signals after transmission over a 36-km SMF when both signals are enabled. (a), (b) the OOK UWB and wired combined signal; (c), (d) the received OOK UWB signal; (e), (f) the received NRZ signal. RBW = 1 MHz.

Fig. 6
Fig. 6

Eye diagrams and electrical spectra of the back-to-back signals and the signals after transmission over a 36-km SMF when both signals are enabled. (a), (b), the BPM UWB and wired combined signal; (c), (d), the received BPM UWB signal; (e), (f), the received NRZ signal. RBW = 1 MHz.

Fig. 7
Fig. 7

(a) Receiver sensitivity for the transmission of the UWB signals, and (b) BER measurements for the transmission of the NRZ signals when only the 1544.91-nm channel is enabled. BTB: back to back.

Fig. 8
Fig. 8

(a) Receiver sensitivity for the transmission of the UWB signals, and (b) BER measurements for the transmission of the NRZ signals when all the three channels are enabled.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

e o ( t )= 2 e i ( t ) 2 [ exp( j κ 1 r( t )+j κ 2 z( t )+j π 2 )+exp( j κ 1 r( t+τ ) ) ]
E( ω )=2π( 1+j )δ( ω ω c )+ κ 1 2 [ j e j( ω ω c )τ 1 ]R( ω ω c ) κ 2 Z( ω ω c )
i( t ) | e o ( t ) | 2 22sin{ κ 1 [ r( t )r( t+τ ) ] }cos[ κ 2 z( t ) ]2cos{ κ 1 [ r( t )r( t+τ ) ] }sin[ κ 2 z( t ) ]
i( t )1 κ 1 [ r( t )r( t+τ ) ] κ 2 z( t )

Metrics