Abstract

We present high speed real time, error free 4-PAM transmission for short range optical links based on a VCSEL operating at 850 nm, a multimode fibre and a simple intensity detector. Transmission speeds of 25 Gbps and 30 Gbps are demonstrated, and the maximum fibre reaches were 300 m and 200 m, respectively. The 4-PAM is also compared with OOK transmission at 25 Gbps, and we find that at this bit rate 4-PAM increases the error free transmission distance in the multimode fibre by 100 m, compared to OOK.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
    [CrossRef]
  2. W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.
  3. J. Ingham, R. Penty, and I. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” Optical Fiber communication Conference, OSA Technical Digest (2008), paper OTuO7.
  4. J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.
  5. K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
    [CrossRef]
  6. S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.
  7. D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” IEEE International Solid-State Circuits Conference, (2009), 106–107.
  8. T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
    [CrossRef]
  9. P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
    [CrossRef]
  10. W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, 1st ed., (Academic Press, Inc., Orlando, FL, USA, 1998).
  11. C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
    [CrossRef]
  12. J. Pollard, “Multilevel data communication over optical fibre,” IEE Proc. I 138, 162–168 (1991).
  13. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol. 17, 2235–2248 (1999).
    [CrossRef]

2010 (1)

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

2009 (1)

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

2006 (1)

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

2001 (1)

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

1999 (1)

1991 (1)

J. Pollard, “Multilevel data communication over optical fibre,” IEE Proc. I 138, 162–168 (1991).

Andrekson, P.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Bimberg, D.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

Breyer, F.

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

Buchmann, P.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Cardenas, D.

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

Carlsson, C.

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

Conradi, J.

Fiol, G.

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Gustavsson, J.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Gustavsson, J. S.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

Haglund, A.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

Halonen, J.

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

Hofmann, W.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

Hopfer, F.

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Ingham, J.

J. Ingham, R. Penty, and I. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” Optical Fiber communication Conference, OSA Technical Digest (2008), paper OTuO7.

Ingham, J. D.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

Joel, A.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

Karlsson, M.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Kögel, B.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

Koonen, A.

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

Kossel, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Kroh, M.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

Larsson, A.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Lee, S.

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

Martinsson, H.

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

Menolfi, C.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Morf, T.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Moser, P.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

Mutig, A.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

Nadtochiy, A.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

Okayasu, T.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” IEEE International Solid-State Circuits Conference, (2009), 106–107.

Olsson, B.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Ono, A.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” IEEE International Solid-State Circuits Conference, (2009), 106–107.

Penty, R.

J. Ingham, R. Penty, and I. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” Optical Fiber communication Conference, OSA Technical Digest (2008), paper OTuO7.

Penty, R. V.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

Pollard, J.

J. Pollard, “Multilevel data communication over optical fibre,” IEE Proc. I 138, 162–168 (1991).

Randel, S.

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

Reutemann, R.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Rhodin, A.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Ruegg, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Schmatz, M.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Szczerba, K.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

Toifl, T.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

van den Boom, H.

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

Vukusic, J.

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

Walklin, S.

Watanabe, D.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” IEEE International Solid-State Circuits Conference, (2009), 106–107.

Way, W. I.

W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, 1st ed., (Academic Press, Inc., Orlando, FL, USA, 1998).

Weiss, J.

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

Westbergh, P.

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

White, I.

J. Ingham, R. Penty, and I. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” Optical Fiber communication Conference, OSA Technical Digest (2008), paper OTuO7.

White, I. H.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

Wolf, P.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

Electron. Lett. (2)

P. Westbergh, J. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[CrossRef]

P. Westbergh, J. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[CrossRef]

IEE Proc. I (1)

J. Pollard, “Multilevel data communication over optical fibre,” IEE Proc. I 138, 162–168 (1991).

IEEE J. Solid-State Circuits (1)

T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. Schmatz, “A 22 Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits 41, 954–965 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett. 13, 358–360 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Other (7)

W. I. Way, Broadband Hybrid Fiber Coax Access System Technologies, 1st ed., (Academic Press, Inc., Orlando, FL, USA, 1998).

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44 Gb/s VCSEL for optical interconnects,” Optical Fiber Communication Conference, (2011), paper PDPC5.

J. Ingham, R. Penty, and I. White, “10 Gb/s & 20 Gb/s extended-reach multimode-fiber datacommunication links using multilevel modulation and transmitter-based equalization,” Optical Fiber communication Conference, OSA Technical Digest (2008), paper OTuO7.

J. D. Ingham, R. V. Penty, I. H. White, P. Westbergh, J. S. Gustavsson, A. Haglund, and A. Larsson, “32 Gb/s multilevel modulation of an 850 nm VCSEL for next-generation datacommunication standards,” in Conference on Lasers and Electro-Optics, (2011), paper CWJ2.

K. Szczerba, B. Olsson, P. Westbergh, A. Rhodin, J. Gustavsson, A. Haglund, M. Karlsson, A. Larsson, and P. Andrekson, “37 Gbps transmission over 200 m of MMF using single cycle subcarrier modulation and a VCSEL with 20 GHz modulation bandwidth,” European Conference on Optical Communication, (2010), paper We7B2.
[CrossRef]

S. Lee, F. Breyer, S. Randel, D. Cardenas, H. van den Boom, and A. Koonen, “Discrete multitone modulation for high-speed data transmission over multimode fibers using 850-nm VCSEL,” Optical Fiber Communication Conference, OSA Technical Digest (2009), paper OWM2.

D. Watanabe, A. Ono, and T. Okayasu, “CMOS optical 4-PAM VCSEL driver with modal-dispersion equalizer for 10 Gb/s 500 m MMF transmission,” IEEE International Solid-State Circuits Conference, (2009), 106–107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup. The outputs of the pattern generator are individually adjustable with regard to amplitude and delay and also phase matched.

Fig. 2
Fig. 2

Eye diagrams at 25 Gbps, after B2B (a) and after propagation over 200 m of MMF (b) and 300 m of MMF (c). The eye diagrams were taken at around 0 dBm received optical power.

Fig. 3
Fig. 3

Eye diagrams at 30 Gbps, after B2B (a) and after propagation over 200 m of MMF (b), taken at around 0 dBm received optical power.

Fig. 4
Fig. 4

BER results for 4-PAM transmission at 25 Gbps (a) and 30 Gbps (b).

Fig. 5
Fig. 5

BER results for OOK transmission at 25 Gbps (a) and comparison of sensitivities for the three tested cases (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

BER = 1 8 ( P 01 + P 10 + 2 P 12 + 2 P 21 + P 23 + P 32 ) .
E R 1 = 1 4 ( P 01 + P 10 ) , E R 2 = 1 4 ( P 12 + P 21 ) , E R 3 = 1 4 ( P 23 + P 32 ) .
BER = 1 2 E R 1 + E R 2 + 1 2 E R 3

Metrics