Abstract

Radio-over-fiber (RoF) schemes offer the possibility of permitting direct access to native format services for the domestic user. A low power requirement and cost effectiveness are crucial to both the service provider and the end user. Here, we present an ultra-low cost and power RoF scheme using direct modulation of commercially-available 1344 nm and 1547 nm VCSELs by band–group 1 UWB wireless signals (ECMA-368) at near broadcast power levels. As a result, greatly simplified electrical-optical-electrical conversion is accomplished. A successful demonstration over a transmission distance of 20.1 km is described using a SSMF, CWDM optical network. EVMs of better than −18.3 dB were achieved.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “High rate ultra wideband PHY and MAC standard,” Standard ECMA-368, 3rd ed. (ECMA, 2008).
  2. M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
    [CrossRef]
  3. S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
    [CrossRef]
  4. “IEEE Standard 802.16-2009—IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems” (IEEE, 2009).
  5. M. P. Thakur, T. Quinlan, S. Dudley, M. Toycan, C. Bock, S. Walker, D. Smith, A. Borghesani, D. Moodie, R. Llorente, M. Ran, and Y. Ben-Ezra, “Bi-directional, 480Mbps, ultra-wideband, radio-over-fiber transmission using a 1310/1564nm reflective electro-absorption transducer and commercially-available components,” in 34th European Conference on Optical Communication, 2008. ECOC 2008(2008), paper Tu4F4.

2009 (1)

M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
[CrossRef]

1990 (1)

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

Boucouvalas, A. C.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

Coles, A. N.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

Cunningham, D. G.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

Li, M.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

Llorente, R.

M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
[CrossRef]

Marti, J.

M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
[CrossRef]

Morant, M.

M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
[CrossRef]

Pérez, J.

M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
[CrossRef]

Walker, S. D.

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. D. Walker, M. Li, A. C. Boucouvalas, D. G. Cunningham, and A. N. Coles, “Design techniques for subcarrier multiplexed broadcast optical networks,” IEEE J. Sel. Areas Commun. 8(7), 1276–1284 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Morant, J. Pérez, R. Llorente, and J. Marti, “Combined analysis of OFDM-UWB transmission in hybrid wireless-optical access networks,” IEEE Photon. Technol. Lett. 21(19), 1378–1380 (2009).
[CrossRef]

Other (3)

“High rate ultra wideband PHY and MAC standard,” Standard ECMA-368, 3rd ed. (ECMA, 2008).

“IEEE Standard 802.16-2009—IEEE standard for local and metropolitan area networks part 16: air interface for broadband wireless access systems” (IEEE, 2009).

M. P. Thakur, T. Quinlan, S. Dudley, M. Toycan, C. Bock, S. Walker, D. Smith, A. Borghesani, D. Moodie, R. Llorente, M. Ran, and Y. Ben-Ezra, “Bi-directional, 480Mbps, ultra-wideband, radio-over-fiber transmission using a 1310/1564nm reflective electro-absorption transducer and commercially-available components,” in 34th European Conference on Optical Communication, 2008. ECOC 2008(2008), paper Tu4F4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) 1547 nm VCSEL S11 Smith chart, (b) 1344 nm VCSEL S11 Smith Chart, (c) 1547 nm VCSEL S21 Transmission frequency response, and (d) 1344 nm VCSEL S21 Transmission frquency response.

Fig. 2
Fig. 2

System diagram showing two-way transmission path.

Fig. 3
Fig. 3

Electrical spectra at launch VCSEL of (a) 1344 nm and (b) 1547 nm. Constellations at launch point working with: (c) 1344 nm and (d) 1547 nm.

Fig. 4
Fig. 4

EVM against UWB drive level for 1344nm and 1547nm VCSELs at 12 mA bias.

Fig. 5
Fig. 5

Electrical spectrums after 12.5 km at: (a) 1344 nm and (b) 1547 nm. Constellations after 12.5 km: (c) 1344 nm and (d) 1547 nm.

Fig. 6
Fig. 6

Electrical spectrums after 20.1 km at: (a) 1344 nm and (b) 1547 nm. Constellations after 20.1 km: (c) 1344 nm and (d) 1547 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EVMα I th 2 B + 2e I ph B + I ph 2 RINB + I ph 2 Φ 2 B + I ph 2 m 6 C 3 m 2 I ph 2
EVMα I th 2 B + I ph 2 RIN.B+ Φ 2 B+ m 6 C 3 m 2 I ph 2
EV M min =3 m opt 4 C 3

Metrics